Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
| Mathematics Instruction | 4 |
| Physics | 4 |
| Problem Solving | 4 |
| Science Instruction | 4 |
| Mathematical Formulas | 3 |
| Science Education | 3 |
| Algebra | 2 |
| High Schools | 2 |
| Integrated Activities | 2 |
| Mathematical Models | 2 |
| Mechanics (Physics) | 2 |
| More ▼ | |
Source
| Physics Teacher | 4 |
Publication Type
| Journal Articles | 4 |
| Guides - Classroom - Teacher | 3 |
| Reports - Evaluative | 1 |
Education Level
Audience
| Practitioners | 2 |
| Teachers | 2 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sokolowski, Andrzej – Physics Teacher, 2019
Research identifies two domains by which mathematics allows learning physics concepts: a technical domain that includes algorithmic operations that lead to solving formulas for an unknown quantity and a structural domain that allows for applying mathematical knowledge for structuring physical phenomena. While the technical domain requires…
Descriptors: Physics, Science Instruction, Mathematics Skills, Scientific Concepts
Peer reviewedMarch, Robert H. – Physics Teacher, 1993
Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)
Descriptors: Mathematical Applications, Mathematical Concepts, Mathematics Instruction, Mechanics (Physics)
Peer reviewedBoyd, James N. – Physics Teacher, 1991
Presents a mathematical problem that, when examined and generalized, develops the relationships between power and efficiency in energy transfer. Offers four examples of simple electrical and mechanical systems to illustrate the principle that maximum power occurs at 50 percent efficiency. (MDH)
Descriptors: Calculus, Electricity, Energy, High Schools
Peer reviewedde Villiers, Michael D. – Physics Teacher, 1991
Presents a simple mathematical model in which resultant speed is the sum or difference between wind speed and runner speed and a more complex model that assumes that only a proportion of the wind's speed affects one's running speed to describe the time difference between running with and without wind. (MDH)
Descriptors: Algebra, High Schools, Integrated Activities, Interdisciplinary Approach

Direct link
