NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)22
Source
Multivariate Behavioral…62
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 62 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Peer reviewed Peer reviewed
Direct linkDirect link
Kelley, Ken; Lai, Keke – Multivariate Behavioral Research, 2011
The root mean square error of approximation (RMSEA) is one of the most widely reported measures of misfit/fit in applications of structural equation modeling. When the RMSEA is of interest, so too should be the accompanying confidence interval. A narrow confidence interval reveals that the plausible parameter values are confined to a relatively…
Descriptors: Computation, Statistical Analysis, Sample Size, Planning
Peer reviewed Peer reviewed
Direct linkDirect link
Olivera-Aguilar, Margarita; Millsap, Roger E. – Multivariate Behavioral Research, 2013
A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…
Descriptors: Statistical Analysis, Measurement, Prediction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P. – Multivariate Behavioral Research, 2012
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…
Descriptors: Statistical Analysis, Error of Measurement, Statistical Bias, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Shrout, Patrick E. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…
Descriptors: Causal Models, Psychopathology, Peer Mediation, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Halpin, Peter F.; Maraun, Michael D. – Multivariate Behavioral Research, 2010
A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…
Descriptors: Models, Selection, Vocational Evaluation, Developmental Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong – Multivariate Behavioral Research, 2010
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Descriptors: Intervals, Sample Size, Factor Analysis, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Chun, So Yeon; Shapiro, Alexander – Multivariate Behavioral Research, 2009
The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…
Descriptors: Statistical Analysis, Structural Equation Models, Validity, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Li; Lee, Taehun – Multivariate Behavioral Research, 2009
We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a chronic problem with the "two-stage" fitting of covariance structure models in the presence of ignorable missing data: the lack of an asymptotically chi-square distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm provides a…
Descriptors: Aggression, Simulation, Factor Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Konstantopoulos, Spyros – Multivariate Behavioral Research, 2008
Experiments that involve nested structures may assign treatment conditions either to entire groups (such as classrooms or schools) or individuals within groups (such as students). Although typically the interest in field experiments is in determining the significance of the overall treatment effect, it is equally important to examine the…
Descriptors: Evaluation Methods, Experiments, Statistical Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Kelley, Ken – Multivariate Behavioral Research, 2008
Methods of sample size planning are developed from the accuracy in parameter approach in the multiple regression context in order to obtain a sufficiently narrow confidence interval for the population squared multiple correlation coefficient when regressors are random. Approximate and exact methods are developed that provide necessary sample size…
Descriptors: Health Services, Intervals, Sample Size, Innovation
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidian, Mortaza; Mata, Matthew – Multivariate Behavioral Research, 2008
Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing…
Descriptors: Structural Equation Models, Simulation, Factor Analysis, Research Methodology
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5