Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 30 |
Descriptor
Source
| Multivariate Behavioral… | 85 |
Author
Publication Type
| Journal Articles | 78 |
| Reports - Evaluative | 39 |
| Reports - Research | 32 |
| Reports - Descriptive | 6 |
| Speeches/Meeting Papers | 3 |
| Information Analyses | 1 |
Education Level
| Higher Education | 3 |
| Elementary Education | 1 |
| Grade 5 | 1 |
| Grade 7 | 1 |
| Intermediate Grades | 1 |
| Junior High Schools | 1 |
Audience
Location
| South Korea | 1 |
| Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Overall, John E.; Tonidandel, Scott – Multivariate Behavioral Research, 2010
A previous Monte Carlo study examined the relative powers of several simple and more complex procedures for testing the significance of difference in mean rates of change in a controlled, longitudinal, treatment evaluation study. Results revealed that the relative powers depended on the correlation structure of the simulated repeated measurements.…
Descriptors: Monte Carlo Methods, Statistical Significance, Correlation, Depression (Psychology)
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim – Multivariate Behavioral Research, 2008
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Descriptors: Models, Identification, Multivariate Analysis, Correlation
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Savalei, Victoria; Yuan, Ke-Hai – Multivariate Behavioral Research, 2009
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
Descriptors: Statistical Inference, Goodness of Fit, Structural Equation Models, Transformations (Mathematics)
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A. – Multivariate Behavioral Research, 2009
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Descriptors: Sample Size, Factor Analysis, Enrollment, Evaluation Methods
Steinley, Douglas; McDonald, Roderick P. – Multivariate Behavioral Research, 2007
Similarities between latent class models with K classes and linear factor models with K-1 factors are investigated. Specifically, the mathematical equivalence between the covariance structure of the two models is discussed, and a Monte Carlo simulation is performed using generated data that represents both latent factors and latent classes with…
Descriptors: Monte Carlo Methods, Item Response Theory, Factor Analysis
Yuan, Ke-Hai – Multivariate Behavioral Research, 2008
In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…
Descriptors: Monte Carlo Methods, Graduate Students, Social Sciences, Data Analysis
Wang, Lijuan; Zhang, Zhiyong; McArdle, John J.; Salthouse, Timothy A. – Multivariate Behavioral Research, 2008
Score limitation at the top of a scale is commonly termed "ceiling effect." Ceiling effects can lead to serious artifactual parameter estimates in most data analysis. This study examines the consequences of ceiling effects in longitudinal data analysis and investigates several methods of dealing with ceiling effects through Monte Carlo simulations…
Descriptors: Longitudinal Studies, Data Analysis, Evaluation Methods, Monte Carlo Methods
Shieh, Gwowen – Multivariate Behavioral Research, 2009
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
Descriptors: Social Science Research, Sample Size, Monte Carlo Methods, Validity
Peer reviewedEveritt, B. S. – Multivariate Behavioral Research, 1988
A likelihood ratio test, using Monte Carlo methods, is conducted to determine the number of classes appropriate to a certain data set when applying latent class analysis. Results confirm that the usually assumed null distribution is inappropriate. (TJH)
Descriptors: Goodness of Fit, Monte Carlo Methods
Peer reviewedDonoghue, John R. – Multivariate Behavioral Research, 1995
Two Monte Carlo studies investigated the effects of within-group covariance structure on subgroup recovery by 10 hierarchical clustering methods using 100 bivariate observations from 2 subgroups. Superior recovery was associated with within-group correlation that matched the direction of subgroup separation. (SLD)
Descriptors: Cluster Analysis, Correlation, Monte Carlo Methods
Fan, Xitao; Sivo, Stephen A. – Multivariate Behavioral Research, 2007
The search for cut-off criteria of fit indices for model fit evaluation (e.g., Hu & Bentler, 1999) assumes that these fit indices are sensitive to model misspecification, but not to different types of models. If fit indices were sensitive to different types of models that are misspecified to the same degree, it would be very difficult to establish…
Descriptors: Structural Equation Models, Criteria, Monte Carlo Methods, Factor Analysis
Hwang, Heungsun; Takane, Yoshio; DeSarbo, Wayne S. – Multivariate Behavioral Research, 2007
The growth curve model has been a useful tool for the analysis of repeated measures data. However, it is designed for an aggregate-sample analysis based on the assumption that the entire sample of respondents are from a single homogenous population. Thus, this method may not be suitable when heterogeneous subgroups exist in the population with…
Descriptors: Equations (Mathematics), Antisocial Behavior, Computation, Child Behavior
Lee, Sik-Yum; Song, Xin-Yuan; Lu, Bin – Multivariate Behavioral Research, 2007
This article proposes an intuitive approach for predictive discriminant analysis with mixed continuous, dichotomous, and ordered categorical variables that are defined via an underlying multivariate normal distribution with a threshold specification. The classification rule is based on the comparison of the observed data logarithm probability…
Descriptors: Factor Analysis, Discriminant Analysis, Probability, Monte Carlo Methods

Direct link
