NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kelava, Augustin; Nagengast, Benjamin – Multivariate Behavioral Research, 2012
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Descriptors: Bayesian Statistics, Computation, Structural Equation Models, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kammeyer-Mueller, John; Steel, Piers D. G.; Rubenstein, Alex – Multivariate Behavioral Research, 2010
Common source bias has been the focus of much attention. To minimize the problem, researchers have sometimes been advised to take measurements of predictors from one observer and measurements of outcomes from another observer or to use separate occasions of measurement. We propose that these efforts to eliminate biases due to common source…
Descriptors: Statistical Bias, Predictor Variables, Measurement, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Cook, Thomas D.; Steiner, Peter M.; Pohl, Steffi – Multivariate Behavioral Research, 2009
This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the…
Descriptors: Statistical Bias, Reliability, Data Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Millsap, Roger E. – Multivariate Behavioral Research, 1995
A theorem is presented that describes conditions under which measurement invariance is consistent with predictive invariance for the linear case. These two forms of invariance are shown to be inconsistent under realistic conditions, and the duality is illustrated with simulated data. Implications for group differences research are discussed. (SLD)
Descriptors: Ethnicity, Groups, Measurement Techniques, Paradox
Peer reviewed Peer reviewed
Graham, John W.; And Others – Multivariate Behavioral Research, 1996
The utility of the three-form design coupled with maximum likelihood methods for estimation of missing values was evaluated. Simulation studies demonstrate that maximum likelihood estimation and multiple imputation methods produce the most efficient and least biased estimates of variances and covariances for normally distributed and slightly…
Descriptors: Data Collection, Estimation (Mathematics), Maximum Likelihood Statistics, Research Design
Peer reviewed Peer reviewed
Curran, Patrick J.; Bollen, Kenneth A.; Paxton, Pamela; Kirby, James; Chen, Feinian – Multivariate Behavioral Research, 2002
Examined several hypotheses about the suitability of the noncentral chi square in applied research using Monte Carlo simulation experiments with seven sample sizes and three distinct model types, each with five specifications. Results show that, in general, for models with small to moderate misspecification, the noncentral chi-square is well…
Descriptors: Chi Square, Models, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Chan, Wai; And Others – Multivariate Behavioral Research, 1995
It is suggested that using an unbiased estimate of the weight matrix may eliminate the small or intermediate sample size bias of the asymptotically distribution-free (ADF) test statistic. Results of simulations show that test statistics based on the biased estimator or the unbiased estimate are highly similar. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Matrices, Sample Size
Peer reviewed Peer reviewed
Buja, Andreas; Eyuboglu, Nermin – Multivariate Behavioral Research, 1992
Use of parallel analysis (PA), a selection rule for the number-of-factors problem, is investigated from the viewpoint of permutation assessment through a Monte Carlo simulation. Results reveal advantages and limitations of PA. Tables of sample eigenvalues are included. (SLD)
Descriptors: Computer Simulation, Correlation, Factor Structure, Mathematical Models
Peer reviewed Peer reviewed
Graham, John W.; Collins, Nancy L. – Multivariate Behavioral Research, 1991
Common approaches to examining the relationship between multitrait-multimethod (MTMM) data and variables outside the MTMM data are compared: averaging various means of each trait and estimating LISREL computer program models, and estimating only relationships between MTMM traits and the outside variables. Problems of correlational bias are…
Descriptors: Comparative Analysis, Computer Simulation, Correlation, Equations (Mathematics)
Peer reviewed Peer reviewed
Farley, John U.; Reddy, Srinivas K. – Multivariate Behavioral Research, 1987
In an experiment manipulating artificial data in a factorial design, model misspecification and varying levels of error in measurement and in model structure are shown to have significant effects on LISREL parameter estimates in a modified peer influence model. (Author/LMO)
Descriptors: Analysis of Variance, Computer Simulation, Error of Measurement, Estimation (Mathematics)