Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 4 |
Descriptor
| Statistical Bias | 11 |
| Simulation | 8 |
| Estimation (Mathematics) | 4 |
| Monte Carlo Methods | 4 |
| Comparative Analysis | 3 |
| Computation | 3 |
| Computer Simulation | 3 |
| Mathematical Models | 3 |
| Correlation | 2 |
| Data Analysis | 2 |
| Data Collection | 2 |
| More ▼ | |
Source
| Multivariate Behavioral… | 11 |
Author
| Graham, John W. | 2 |
| Austin, Peter C. | 1 |
| Bollen, Kenneth A. | 1 |
| Buja, Andreas | 1 |
| Chan, Wai | 1 |
| Chen, Feinian | 1 |
| Collins, Nancy L. | 1 |
| Cook, Thomas D. | 1 |
| Curran, Patrick J. | 1 |
| Eyuboglu, Nermin | 1 |
| Farley, John U. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 11 |
| Reports - Evaluative | 8 |
| Reports - Research | 3 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Kelava, Augustin; Nagengast, Benjamin – Multivariate Behavioral Research, 2012
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Descriptors: Bayesian Statistics, Computation, Structural Equation Models, Predictor Variables
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Kammeyer-Mueller, John; Steel, Piers D. G.; Rubenstein, Alex – Multivariate Behavioral Research, 2010
Common source bias has been the focus of much attention. To minimize the problem, researchers have sometimes been advised to take measurements of predictors from one observer and measurements of outcomes from another observer or to use separate occasions of measurement. We propose that these efforts to eliminate biases due to common source…
Descriptors: Statistical Bias, Predictor Variables, Measurement, Data Collection
Cook, Thomas D.; Steiner, Peter M.; Pohl, Steffi – Multivariate Behavioral Research, 2009
This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the…
Descriptors: Statistical Bias, Reliability, Data Analysis, Regression (Statistics)
Peer reviewedMillsap, Roger E. – Multivariate Behavioral Research, 1995
A theorem is presented that describes conditions under which measurement invariance is consistent with predictive invariance for the linear case. These two forms of invariance are shown to be inconsistent under realistic conditions, and the duality is illustrated with simulated data. Implications for group differences research are discussed. (SLD)
Descriptors: Ethnicity, Groups, Measurement Techniques, Paradox
Peer reviewedGraham, John W.; And Others – Multivariate Behavioral Research, 1996
The utility of the three-form design coupled with maximum likelihood methods for estimation of missing values was evaluated. Simulation studies demonstrate that maximum likelihood estimation and multiple imputation methods produce the most efficient and least biased estimates of variances and covariances for normally distributed and slightly…
Descriptors: Data Collection, Estimation (Mathematics), Maximum Likelihood Statistics, Research Design
Peer reviewedCurran, Patrick J.; Bollen, Kenneth A.; Paxton, Pamela; Kirby, James; Chen, Feinian – Multivariate Behavioral Research, 2002
Examined several hypotheses about the suitability of the noncentral chi square in applied research using Monte Carlo simulation experiments with seven sample sizes and three distinct model types, each with five specifications. Results show that, in general, for models with small to moderate misspecification, the noncentral chi-square is well…
Descriptors: Chi Square, Models, Monte Carlo Methods, Sample Size
Peer reviewedChan, Wai; And Others – Multivariate Behavioral Research, 1995
It is suggested that using an unbiased estimate of the weight matrix may eliminate the small or intermediate sample size bias of the asymptotically distribution-free (ADF) test statistic. Results of simulations show that test statistics based on the biased estimator or the unbiased estimate are highly similar. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Matrices, Sample Size
Peer reviewedBuja, Andreas; Eyuboglu, Nermin – Multivariate Behavioral Research, 1992
Use of parallel analysis (PA), a selection rule for the number-of-factors problem, is investigated from the viewpoint of permutation assessment through a Monte Carlo simulation. Results reveal advantages and limitations of PA. Tables of sample eigenvalues are included. (SLD)
Descriptors: Computer Simulation, Correlation, Factor Structure, Mathematical Models
Peer reviewedGraham, John W.; Collins, Nancy L. – Multivariate Behavioral Research, 1991
Common approaches to examining the relationship between multitrait-multimethod (MTMM) data and variables outside the MTMM data are compared: averaging various means of each trait and estimating LISREL computer program models, and estimating only relationships between MTMM traits and the outside variables. Problems of correlational bias are…
Descriptors: Comparative Analysis, Computer Simulation, Correlation, Equations (Mathematics)
Peer reviewedFarley, John U.; Reddy, Srinivas K. – Multivariate Behavioral Research, 1987
In an experiment manipulating artificial data in a factorial design, model misspecification and varying levels of error in measurement and in model structure are shown to have significant effects on LISREL parameter estimates in a modified peer influence model. (Author/LMO)
Descriptors: Analysis of Variance, Computer Simulation, Error of Measurement, Estimation (Mathematics)

Direct link
