Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 7 |
Descriptor
| Computation | 9 |
| Sample Size | 9 |
| Statistical Analysis | 4 |
| Comparative Analysis | 3 |
| Correlation | 3 |
| Factor Analysis | 3 |
| Matrices | 3 |
| Models | 3 |
| Data Analysis | 2 |
| Evaluation Methods | 2 |
| Intervals | 2 |
| More ▼ | |
Source
| Multivariate Behavioral… | 9 |
Author
| Amemiya, Yasuo | 1 |
| Gagne, Phill | 1 |
| Guo, Jia | 1 |
| Hancock, Gregory R. | 1 |
| Hernandez, Adolfo | 1 |
| Kelley, Ken | 1 |
| Krishnamoorthy, K. | 1 |
| Lai, Keke | 1 |
| Livacic-Rojas, Pablo | 1 |
| Luo, Shanhong | 1 |
| Maydeu-Olivares, Alberto | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 9 |
| Reports - Evaluative | 4 |
| Reports - Research | 3 |
| Reports - Descriptive | 2 |
Education Level
Audience
| Researchers | 1 |
Location
| China | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Peabody Picture Vocabulary… | 1 |
What Works Clearinghouse Rating
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Kelley, Ken; Lai, Keke – Multivariate Behavioral Research, 2011
The root mean square error of approximation (RMSEA) is one of the most widely reported measures of misfit/fit in applications of structural equation modeling. When the RMSEA is of interest, so too should be the accompanying confidence interval. A narrow confidence interval reveals that the plausible parameter values are confined to a relatively…
Descriptors: Computation, Statistical Analysis, Sample Size, Planning
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong – Multivariate Behavioral Research, 2010
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Descriptors: Intervals, Sample Size, Factor Analysis, Least Squares Statistics
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient
Krishnamoorthy, K.; Xia, Yanping – Multivariate Behavioral Research, 2008
The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…
Descriptors: Statistical Analysis, Intervals, Sample Size, Testing
Maydeu-Olivares, Alberto; Hernandez, Adolfo – Multivariate Behavioral Research, 2007
The interpretation of a Thurstonian model for paired comparisons where the utilities' covariance matrix is unrestricted proved to be difficult due to the comparative nature of the data. We show that under a suitable constraint the utilities' correlation matrix can be estimated, yielding a readily interpretable solution. This set of identification…
Descriptors: Identification, Structural Equation Models, Matrices, Comparative Analysis
Shieh, Gwowen – Multivariate Behavioral Research, 2009
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
Descriptors: Social Science Research, Sample Size, Monte Carlo Methods, Validity
Gagne, Phill; Hancock, Gregory R. – Multivariate Behavioral Research, 2006
Sample size recommendations in confirmatory factor analysis (CFA) have recently shifted away from observations per variable or per parameter toward consideration of model quality. Extending research by Marsh, Hau, Balla, and Grayson (1998), simulations were conducted to determine the extent to which CFA model convergence and parameter estimation…
Descriptors: Sample Size, Factor Analysis, Computation, Models
Vallejo, Guillermo; Livacic-Rojas, Pablo – Multivariate Behavioral Research, 2005
This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of…
Descriptors: Computation, Multivariate Analysis, Sample Size, Matrices

Peer reviewed
Direct link
