NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Thoemmes, Felix J.; Kim, Eun Sook – Multivariate Behavioral Research, 2011
The use of propensity scores in psychological and educational research has been steadily increasing in the last 2 to 3 years. However, there are some common misconceptions about the use of different estimation techniques and conditioning choices in the context of propensity score analysis. In addition, reporting practices for propensity score…
Descriptors: Social Science Research, Probability, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Gera, Benjamin Lee – Multivariate Behavioral Research, 2013
Researchers are strongly encouraged to accompany the results of statistical tests with appropriate estimates of effect size. For 2-group comparisons, a probability-based effect size estimator ("A") has many appealing properties (e.g., it is easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We review…
Descriptors: Psychological Studies, Gender Differences, Researchers, Test Results
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Mullen, Tara – Multivariate Behavioral Research, 2012
It is good scientific practice to the report an appropriate estimate of effect size and a confidence interval (CI) to indicate the precision with which a population effect was estimated. For comparisons of 2 independent groups, a probability-based effect size estimator (A) that is equal to the area under a receiver operating characteristic curve…
Descriptors: Computation, Statistical Analysis, Probability, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lam, Kar Yin; Koning, Alex J.; Franses, Philip Hans – Multivariate Behavioral Research, 2011
We consider the estimation of probabilistic ranking models in the context of conjoint experiments. By using approximate rather than exact ranking probabilities, we avoided the computation of high-dimensional integrals. We extended the approximation technique proposed by Henery (1981) in the context of the Thurstone-Mosteller-Daniels model to any…
Descriptors: Probability, Evaluation Research, Computation, Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2011
The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing…
Descriptors: Probability, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Peer reviewed Peer reviewed
Direct linkDirect link
Jo, Booil; Stuart, Elizabeth A.; MacKinnon, David P.; Vinokur, Amiram D. – Multivariate Behavioral Research, 2011
Mediation analysis uses measures of hypothesized mediating variables to test theory for how a treatment achieves effects on outcomes and to improve subsequent treatments by identifying the most efficient treatment components. Most current mediation analysis methods rely on untested distributional and functional form assumptions for valid…
Descriptors: Probability, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Thoemmes, Felix J.; West, Stephen G. – Multivariate Behavioral Research, 2011
In this article we propose several modeling choices to extend propensity score analysis to clustered data. We describe different possible model specifications for estimation of the propensity score: single-level model, fixed effects model, and two random effects models. We also consider both conditioning within clusters and conditioning across…
Descriptors: Probability, Scores, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2011
Propensity score methods allow investigators to estimate causal treatment effects using observational or nonrandomized data. In this article we provide a practical illustration of the appropriate steps in conducting propensity score analyses. For illustrative purposes, we use a sample of current smokers who were discharged alive after being…
Descriptors: Smoking, Hospitals, Program Effectiveness, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P. – Multivariate Behavioral Research, 2006
We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…
Descriptors: Scoring, Probability, Goodness of Fit, Life Satisfaction