Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 5 |
Descriptor
Computation | 7 |
Predictor Variables | 7 |
Data Analysis | 3 |
Regression (Statistics) | 3 |
Statistical Bias | 3 |
Error of Measurement | 2 |
Models | 2 |
Simulation | 2 |
Statistical Analysis | 2 |
Adolescents | 1 |
Anxiety | 1 |
More ▼ |
Source
Multivariate Behavioral… | 7 |
Author
Publication Type
Journal Articles | 7 |
Reports - Research | 4 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Grade 7 | 1 |
Higher Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Miller, Jason W.; Stromeyer, William R.; Schwieterman, Matthew A. – Multivariate Behavioral Research, 2013
The past decade has witnessed renewed interest in the use of the Johnson-Neyman (J-N) technique for calculating the regions of significance for the simple slope of a focal predictor on an outcome variable across the range of a second, continuous independent variable. Although tools have been developed to apply this technique to probe 2- and 3-way…
Descriptors: Social Sciences, Regression (Statistics), Predictor Variables, Hierarchical Linear Modeling
Kelava, Augustin; Nagengast, Benjamin – Multivariate Behavioral Research, 2012
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Descriptors: Bayesian Statistics, Computation, Structural Equation Models, Predictor Variables
Gottschall, Amanda C.; West, Stephen G.; Enders, Craig K. – Multivariate Behavioral Research, 2012
Behavioral science researchers routinely use scale scores that sum or average a set of questionnaire items to address their substantive questions. A researcher applying multiple imputation to incomplete questionnaire data can either impute the incomplete items prior to computing scale scores or impute the scale scores directly from other scale…
Descriptors: Questionnaires, Data Analysis, Computation, Monte Carlo Methods
Kammeyer-Mueller, John; Steel, Piers D. G.; Rubenstein, Alex – Multivariate Behavioral Research, 2010
Common source bias has been the focus of much attention. To minimize the problem, researchers have sometimes been advised to take measurements of predictors from one observer and measurements of outcomes from another observer or to use separate occasions of measurement. We propose that these efforts to eliminate biases due to common source…
Descriptors: Statistical Bias, Predictor Variables, Measurement, Data Collection
Schluchter, Mark D. – Multivariate Behavioral Research, 2008
In behavioral research, interest is often in examining the degree to which the effect of an independent variable X on an outcome Y is mediated by an intermediary or mediator variable M. This article illustrates how generalized estimating equations (GEE) modeling can be used to estimate the indirect or mediated effect, defined as the amount by…
Descriptors: Intervals, Predictor Variables, Equations (Mathematics), Computation
Moerbeek, Mirjam – Multivariate Behavioral Research, 2004
Multilevel analysis is an appropriate tool for the analysis of hierarchically structured data. There may, however, be reasons to ignore one of the levels of nesting in the data analysis. In this article a three level model with one predictor variable is used as a reference model and the top or intermediate level is ignored in the data analysis.…
Descriptors: Data Analysis, Predictor Variables, Computation, Statistical Analysis
Vermunt, Jeroen K. – Multivariate Behavioral Research, 2005
A well-established approach to modeling clustered data introduces random effects in the model of interest. Mixed-effects logistic regression models can be used to predict discrete outcome variables when observations are correlated. An extension of the mixed-effects logistic regression model is presented in which the dependent variable is a latent…
Descriptors: Predictor Variables, Correlation, Maximum Likelihood Statistics, Error of Measurement