NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Konstantopoulos, Spyros – Multivariate Behavioral Research, 2012
Field experiments with nested structures are becoming increasingly common, especially designs that assign randomly entire clusters such as schools to a treatment and a control group. In such large-scale cluster randomized studies the challenge is to obtain sufficient power of the test of the treatment effect. The objective is to maximize power…
Descriptors: Statistical Analysis, Multivariate Analysis, Robustness (Statistics), Class Size
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Yao; Wiebe, Richard P.; Cleveland, H. Harrington; Molenaar, Peter C. M.; Harris, Kitty S. – Multivariate Behavioral Research, 2013
Psychological constructs, such as negative affect and substance use cravings that closely predict relapse, show substantial intraindividual day-to-day variability. This intraindividual variability of relevant psychological states combined with the "one day at a time" nature of sustained abstinence warrant a day-to-day investigation of substance…
Descriptors: Substance Abuse, Smoking, Psychological Patterns, Young Adults
Peer reviewed Peer reviewed
Direct linkDirect link
Alessandri, Guido; Caprara, Gian Vittorio; Tisak, John – Multivariate Behavioral Research, 2012
Literature documents that the judgments people hold about themselves, their life, and their future are important ingredients of their psychological functioning and well-being and are commonly related to each other. In this article, results from a longitudinal study (N = 298, 45% males) are presented. Using an integrative Latent Curve, Latent…
Descriptors: Statistical Analysis, Adolescents, Personality Traits, Individual Development
Peer reviewed Peer reviewed
Direct linkDirect link
Huo, Yan; Budescu, David V. – Multivariate Behavioral Research, 2009
Dominance analysis (Budescu, 1993) offers a general framework for determination of relative importance of predictors in univariate and multivariate multiple regression models. This approach relies on pairwise comparisons of the contribution of predictors in all relevant subset models. In this article we extend dominance analysis to canonical…
Descriptors: Multivariate Analysis, Correlation, Regression (Statistics), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Brusco, Michael J.; Cradit, J. Dennis; Steinley, Douglas; Fox, Gavin L. – Multivariate Behavioral Research, 2008
Clusterwise linear regression is a multivariate statistical procedure that attempts to cluster objects with the objective of minimizing the sum of the error sums of squares for the within-cluster regression models. In this article, we show that the minimization of this criterion makes no effort to distinguish the error explained by the…
Descriptors: Regression (Statistics), Models, Research Methodology, Multivariate Analysis
Peer reviewed Peer reviewed
Vallejo, Guillermo; Fidalgo, Angel; Fernandez, Paula – Multivariate Behavioral Research, 2001
Estimated empirical Type I error rate and power rate for three procedures for analyzing multivariate repeated measures designs: (1) the doubly multivariate model; (2) the Welch-James multivariate solution (H. Keselman, M. Carriere, a nd L. Lix, 1993); and (3) the multivariate version of the modified Brown-Forsythe procedure (M. Brown and A.…
Descriptors: Multivariate Analysis, Power (Statistics), Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Kowalchuk, Rhonda K.; Keselman, H. J.; Algina, James – Multivariate Behavioral Research, 2003
The Welch-James (WJ) and the Huynh Improved General Approximation (IGA) tests for interaction were examined with respect to Type I error in a between- by within-subjects repeated measures design when data were non-normal, non-spherical and heterogeneous, particularly when group sizes were unequal. The tests were computed with aligned ranks and…
Descriptors: Interaction, Least Squares Statistics, Multivariate Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Zijlstra, Wobbe P.; Van Der Ark, L. Andries; Sijtsma, Klaas – Multivariate Behavioral Research, 2007
Classical methods for detecting outliers deal with continuous variables. These methods are not readily applicable to categorical data, such as incorrect/correct scores (0/1) and ordered rating scale scores (e.g., 0,..., 4) typical of multi-item tests and questionnaires. This study proposes two definitions of outlier scores suited for categorical…
Descriptors: Rating Scales, Scores, Regression (Statistics), Statistical Analysis
Peer reviewed Peer reviewed
Cohen, Jacob; Nee, John C. M. – Multivariate Behavioral Research, 1990
The analysis of contingency tables via set correlation allows the assessment of subhypotheses involving contrast functions of the categories of the nominal scales. The robustness of such methods with regard to Type I error and statistical power was studied via a Monte Carlo experiment. (TJH)
Descriptors: Computer Simulation, Monte Carlo Methods, Multivariate Analysis, Power (Statistics)
Peer reviewed Peer reviewed
Everitt, B. S. – Multivariate Behavioral Research, 1981
Results show that the proposed sampling distribution of the test appears to be appropriate only for sample sizes above 50, and for data where the sample size is 10 times the number of variables. For such cases the power of the test is found to be fairly low. (Author/RL)
Descriptors: Mathematical Formulas, Maximum Likelihood Statistics, Monte Carlo Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Woodbury, Max A.; Manton, Kenneth G. – Multivariate Behavioral Research, 1991
An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Zwick, Rebecca – Multivariate Behavioral Research, 1986
The purpose of the current study was to investigate the relative performance of the parametric, rank, and normal scores procedures when the classical assumptions were met and under violations of these assumptions. This investigation included the normal scores as well as the rank test. (LMO)
Descriptors: Hypothesis Testing, Mathematical Models, Measurement Techniques, Monte Carlo Methods
Peer reviewed Peer reviewed
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2002
Proposes a Bayesian analysis of the multivariate linear model with polytomous variables. Shows how a Gibbs sampler algorithm is implemented to produce the Bayesian estimates. Illustrates the proposed methodology through examples using multivariate linear regression and multivariate two-way analysis of variance with real data. (SLD)
Descriptors: Bayesian Statistics, Models, Multivariate Analysis, Selection
Peer reviewed Peer reviewed
Poon, Wai-Yin; Tang, Fung-Chu – Multivariate Behavioral Research, 2002
Studied a multiple group model with ordinal categorical observed variables that are manifestations of underlying normal variables. Proposed to apply across-group stochastic constraints on thresholds to identify the model and used a Bayesian approach to analyze the model. Simulation findings and the analysis of a real data set show the usefulness…
Descriptors: Bayesian Statistics, Models, Multivariate Analysis, Simulation
Previous Page | Next Page ยป
Pages: 1  |  2