NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Estabrook, Ryne; Neale, Michael – Multivariate Behavioral Research, 2013
Factor score estimation is a controversial topic in psychometrics, and the estimation of factor scores from exploratory factor models has historically received a great deal of attention. However, both confirmatory factor models and the existence of missing data have generally been ignored in this debate. This article presents a simulation study…
Descriptors: Factor Analysis, Scores, Computation, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gottschall, Amanda C.; West, Stephen G.; Enders, Craig K. – Multivariate Behavioral Research, 2012
Behavioral science researchers routinely use scale scores that sum or average a set of questionnaire items to address their substantive questions. A researcher applying multiple imputation to incomplete questionnaire data can either impute the incomplete items prior to computing scale scores or impute the scale scores directly from other scale…
Descriptors: Questionnaires, Data Analysis, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria – Multivariate Behavioral Research, 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
Descriptors: Computation, Intervals, Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa – Multivariate Behavioral Research, 2010
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Descriptors: Longitudinal Studies, Data, Models, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S. – Multivariate Behavioral Research, 2012
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Descriptors: Monte Carlo Methods, Computation, Robustness (Statistics), Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steyn, H. S., Jr.; Ellis, S. M. – Multivariate Behavioral Research, 2009
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Descriptors: Effect Size, Multivariate Analysis, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Multivariate Behavioral Research, 2009
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
Descriptors: Social Science Research, Sample Size, Monte Carlo Methods, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Hwang, Heungsun; Takane, Yoshio; DeSarbo, Wayne S. – Multivariate Behavioral Research, 2007
The growth curve model has been a useful tool for the analysis of repeated measures data. However, it is designed for an aggregate-sample analysis based on the assumption that the entire sample of respondents are from a single homogenous population. Thus, this method may not be suitable when heterogeneous subgroups exist in the population with…
Descriptors: Equations (Mathematics), Antisocial Behavior, Computation, Child Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Kwok, Oi-man; West, Stephen G.; Green, Samuel B. – Multivariate Behavioral Research, 2007
This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…
Descriptors: Monte Carlo Methods, Data Analysis, Computation, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Klein, Andreas G.; Muthen, Bengt O. – Multivariate Behavioral Research, 2007
In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…
Descriptors: Structural Equation Models, Testing, Physical Fitness, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods