NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Humphreys, Lloyd G.; Montanelli, Richard G. – Multivariate Behavioral Research, 1975
Descriptors: Correlation, Factor Analysis, Matrices, Sampling
Peer reviewed Peer reviewed
Tomas, Jose M.; Hontangas, Pedro M.; Oliver, Amparo – Multivariate Behavioral Research, 2000
Assessed two models for confirmatory factor analysis of multitrait-multimethod data through Monte Carlo simulation. The correlated traits-correlated methods (CTCM) and the correlated traits-correlated uniqueness (CTCU) models were compared. Results suggest that CTCU is a good alternative to CTCM in the typical multitrait-multimethod matrix, but…
Descriptors: Matrices, Monte Carlo Methods, Multitrait Multimethod Techniques, Simulation
Peer reviewed Peer reviewed
Harrop, John W.; Velicer, Wayne F. – Multivariate Behavioral Research, 1985
Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)
Descriptors: Computer Simulation, Data Analysis, Mathematical Models, Matrices
Peer reviewed Peer reviewed
Collins, Linda M.; And Others – Multivariate Behavioral Research, 1986
The present study compares the performance of phi coefficients and tetrachorics along two dimensions of factor recovery in binary data. These dimensions are (1) accuracy of nontrivial factor identifications; and (2) factor structure recovery given a priori knowledge of the correct number of factors to rotate. (Author/LMO)
Descriptors: Computer Software, Factor Analysis, Factor Structure, Item Analysis
Peer reviewed Peer reviewed
Chan, Wai; And Others – Multivariate Behavioral Research, 1995
It is suggested that using an unbiased estimate of the weight matrix may eliminate the small or intermediate sample size bias of the asymptotically distribution-free (ADF) test statistic. Results of simulations show that test statistics based on the biased estimator or the unbiased estimate are highly similar. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Matrices, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Vallejo, Guillermo; Livacic-Rojas, Pablo – Multivariate Behavioral Research, 2005
This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of…
Descriptors: Computation, Multivariate Analysis, Sample Size, Matrices
Peer reviewed Peer reviewed
Chan, Wai; Bentler, Peter M. – Multivariate Behavioral Research, 1996
A method is proposed for partially analyzing additive ipsative data (PAID). Transforming the PAID according to a developed equation preserves the density of the transformed data, and maximum likelihood estimation can be carried out as usual. Simulation results show that the original structural parameters can be accurately estimated from PAID. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Goodness of Fit, Matrices
Peer reviewed Peer reviewed
Kloot, Willem A. van der; Herk, Hester van – Multivariate Behavioral Research, 1991
Two sets of real sorting data from 50 college students are used to compare results of multidimensional scaling of raw co-occurrence frequencies or dissimilarity measures (D) and profile distances (delta) to determine which yields a better representation of the underlying structure of 2 sets of stimuli. Slight differences are discussed. (SLD)
Descriptors: Classification, Cognitive Processes, College Students, Comparative Analysis
Peer reviewed Peer reviewed
Tang, K. Linda; Algina, James – Multivariate Behavioral Research, 1993
Type I error rates of four multivariate tests (Pilai-Bartlett trace, Johansen's test, James' first-order test, and James' second-order test) were compared for heterogeneous covariance matrices in 360 simulated experiments. The superior performance of Johansen's test and James' second-order test is discussed. (SLD)
Descriptors: Analysis of Covariance, Analysis of Variance, Comparative Analysis, Equations (Mathematics)