NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian – Multivariate Behavioral Research, 2011
Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…
Descriptors: Simulation, Factor Analysis, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Cohen, Ayala; Nahum-Shani, Inbal; Doveh, Etti – Multivariate Behavioral Research, 2010
In their seminal paper, Edwards and Parry (1993) presented the polynomial regression as a better alternative to applying difference score in the study of congruence. Although this method is increasingly applied in congruence research, its complexity relative to other methods for assessing congruence (e.g., difference score methods) was one of the…
Descriptors: Behavioral Sciences, Evaluation Methods, Social Sciences, Social Support Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Overall, John E.; Tonidandel, Scott – Multivariate Behavioral Research, 2010
A previous Monte Carlo study examined the relative powers of several simple and more complex procedures for testing the significance of difference in mean rates of change in a controlled, longitudinal, treatment evaluation study. Results revealed that the relative powers depended on the correlation structure of the simulated repeated measurements.…
Descriptors: Monte Carlo Methods, Statistical Significance, Correlation, Depression (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Kowalchuk, Rhonda K.; Keselman, H. J.; Algina, James – Multivariate Behavioral Research, 2003
The Welch-James (WJ) and the Huynh Improved General Approximation (IGA) tests for interaction were examined with respect to Type I error in a between- by within-subjects repeated measures design when data were non-normal, non-spherical and heterogeneous, particularly when group sizes were unequal. The tests were computed with aligned ranks and…
Descriptors: Interaction, Least Squares Statistics, Multivariate Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
MacKinnon, David P.; Lockwood, Chondra M.; Williams, Jason – Multivariate Behavioral Research, 2004
The most commonly used method to test an indirect effect is to divide the estimate of the indirect effect by its standard error and compare the resulting z statistic with a critical value from the standard normal distribution. Confidence limits for the indirect effect are also typically based on critical values from the standard normal…
Descriptors: Simulation, Regression (Statistics), Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Klein, Andreas G.; Muthen, Bengt O. – Multivariate Behavioral Research, 2007
In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…
Descriptors: Structural Equation Models, Testing, Physical Fitness, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Nesselroade, John R. – Multivariate Behavioral Research, 2007
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Descriptors: Bayesian Statistics, Computation, Simulation, Behavioral Science Research
Peer reviewed Peer reviewed
McDonald, Roderick P. – Multivariate Behavioral Research, 1996
Six methods for fitting path models with weighted composites of variables replacing latent variables (of which five are easily implemented with conventional computer software) are introduced and related to "soft" modeling by Partial Least Squares. Criteria for comparing their performance are devised, and some evaluative remarks are…
Descriptors: Comparative Analysis, Computer Software, Criteria, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses
Peer reviewed Peer reviewed
O'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1991
A procedure for evaluating a variety of rater reliability models is presented. A multivariate linear model is used to describe and assess a set of ratings. Parameters are represented in terms of a factor analytic model, and maximum likelihood methods test the model parameters. Illustrative examples are presented. (SLD)
Descriptors: Comparative Analysis, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2005
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Descriptors: Structural Equation Models, Simulation, Computation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods