Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Mathematics and Computer… | 30 |
Author
Dence, Thomas P. | 2 |
Osler, Thomas J. | 2 |
Sastry, K. R. S. | 2 |
Skurnick, Ronald | 2 |
Arzt, Joshua | 1 |
Ayoub, Ayoub B. | 1 |
Baumback, Randall R. | 1 |
Beintema, Mark B. | 1 |
Bosse, Michael J. | 1 |
Carley, Holly | 1 |
Costello, Patrick | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Guides - Classroom - Teacher | 13 |
Reports - Descriptive | 12 |
Guides - General | 4 |
Guides - Classroom - Learner | 2 |
Computer Programs | 1 |
Non-Print Media | 1 |
Education Level
Higher Education | 6 |
High Schools | 2 |
Audience
Practitioners | 9 |
Teachers | 6 |
Students | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Carley, Holly – Mathematics and Computer Education, 2011
This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.
Descriptors: Number Concepts, Mathematics, Mathematical Concepts, Mathematics Instruction
Skurnick, Ronald – Mathematics and Computer Education, 2011
This classroom note is presented as a suggested exercise--not to have the class prove or disprove Goldbach's Conjecture, but to stimulate student discussions in the classroom regarding proof, as well as necessary, sufficient, satisfied, and unsatisfied conditions. Goldbach's Conjecture is one of the oldest unsolved problems in the field of number…
Descriptors: Mathematical Formulas, Numbers, Number Concepts, High School Students
Skurnick, Ronald – Mathematics and Computer Education, 2007
The Pythagorean Theorem, arguably one of the best-known results in mathematics, states that a triangle is a right triangle if and only if the sum of the squares of the lengths of two of its sides equals the square of the length of its third side. Closely associated with the Pythagorean Theorem is the concept of Pythagorean triples. A "Pythagorean…
Descriptors: Geometric Concepts, Arithmetic, Number Concepts, Mathematical Formulas
Sastry, K. R. S. – Mathematics and Computer Education, 2007
This paper takes a known point from Brocard geometry, a known result from the geometry of the equilateral triangle, and bring in Euler's [empty set] function. It then demonstrates how to obtain new Brocard Geometric number theory results from them. Furthermore, this paper aims to determine a [triangle]ABC whose Crelle-Brocard Point [omega]…
Descriptors: Geometric Concepts, Number Concepts, Geometry, Theories
Osler, Thomas J.; Stugard, Nicholas – Mathematics and Computer Education, 2006
In some elementary courses, it is shown that square root of 2 is irrational. It is also shown that the roots like square root of 3, cube root of 2, etc., are irrational. Much less often, it is shown that the number "e," the base of the natural logarithm, is irrational, even though a proof is available that uses only elementary calculus. In this…
Descriptors: Geometric Concepts, Transformations (Mathematics), Calculus, Number Concepts
Arzt, Joshua; Gaze, Eric – Mathematics and Computer Education, 2004
Divisibility tests for digits other than 7 are well known and rely on the base 10 representation of numbers. For example, a natural number is divisible by 4 if the last 2 digits are divisible by 4 because 4 divides 10[sup k] for all k equal to or greater than 2. Divisibility tests for 7, while not nearly as well known, do exist and are also…
Descriptors: Number Concepts, Mathematics Education, Arithmetic, Number Systems

Costello, Patrick – Mathematics and Computer Education, 1991
The number theory concepts of perfect, deficient, and abundant numbers are subdivided and then utilized to discuss propositions concerning semiperfect, weird, and integer-perfect numbers. Conjectures about relationships among these latter numbers are suggested as avenues for further investigation. (JJK)
Descriptors: College Mathematics, Higher Education, Mathematics Education, Mathematics Instruction
Dence, Thomas P.; Heath, Steven – Mathematics and Computer Education, 2005
The number Pi has a rich and colorful history. The origin of Pi dates back to when Greek mathematicians realized that the ratio of the circumference to the diameter is the same for all circles. One is most familiar with many of its applications to geometry, analysis, probability, and number theory. This paper demonstrates several examples of how…
Descriptors: Technology, Probability, Number Concepts, Mathematical Concepts
Khosravani, Azar N.; Beintema, Mark B. – Mathematics and Computer Education, 2006
We present an expository account of the development of the theory of binary quadratic forms. Beginning with the formulation and proof of the Two-Square Theorem, we show how the study of forms of the type x[squared] + ny[squared] led to the discovery of the Quadratic Reciprocity Law, and how this theorem, along with the concept of reduction relates…
Descriptors: Expository Writing, Equations (Mathematics), Mathematical Logic, Predictive Validity

Bosse, Michael J. – Mathematics and Computer Education, 2001
This brief investigation exemplifies such considerations by relating concepts from number theory, set theory, probability, logic, and calculus. Satisfying the call for students to acquire skills in estimation, the following technique allows one to "immediately estimate" whether or not a number is prime. (MM)
Descriptors: Mathematics Education, Number Concepts, Prime Numbers, Probability
Glaister, P. – Mathematics and Computer Education, 2005
In this paper, the author gives a further simple generalization of a power series evaluation of an integral using Taylor series to derive the result. The author encourages readers to consider numerical methods to evaluate the integrals and sums. Such methods are suitable for use in courses in advanced calculus and numerical analysis.
Descriptors: Calculus, Computation, Mathematical Concepts, Generalization

Simmonds, Gail – Mathematics and Computer Education, 1982
Results obtained from investigating number properties are discussed, along with six points that are felt, in general, to be the ingredients necessary for a successful learning experience. Two programs written in BASIC designed to aid in aspects of Number Theory are included. (MP)
Descriptors: College Mathematics, Computer Programs, Higher Education, Mathematics Instruction

Sastry, K. R. S.; Pranesachar, C. R.; Venkatachala, B. J. – Mathematics and Computer Education, 1998
Focuses on the study of the sum of two integer squares, neither of which is zero square. Develops some new interesting and nonstandard ideas that can be put to use in number theory class, mathematics club meetings, or popular lectures. (ASK)
Descriptors: College Mathematics, Higher Education, Mathematical Concepts, Mathematics Instruction
Ayoub, Ayoub B. – Mathematics and Computer Education, 2005
A triple (x,y,z) of natural numbers is called a Primitive Pythagorean Triple (PPT) if it satisfies two conditions: (1) x[squared] + y[squared] = z[squared]; and (2) x, y, and z have no common factor other than one. All the PPT's are given by the parametric equations: (1) x = m[squared] - n[squared]; (2) y = 2mn; and (3) z = m[squared] +…
Descriptors: Geometric Concepts, Equations (Mathematics), Mathematical Concepts, Problem Solving

Metz, James – Mathematics and Computer Education, 1984
A study of a class of numbers called 'Good numbers' can provide students with many opportunities for investigation, conjecture, and proof. Definitions and proofs are presented along with suggested questions. (MNS)
Descriptors: College Mathematics, Discovery Learning, Higher Education, Mathematics
Previous Page | Next Page ยป
Pages: 1 | 2