Descriptor
| Algorithms | 5 |
| College Mathematics | 4 |
| Higher Education | 4 |
| Computation | 3 |
| Mathematics | 3 |
| Mathematics Instruction | 3 |
| Computer Software | 2 |
| Mathematical Applications | 2 |
| Mathematical Logic | 2 |
| Mathematics Skills | 2 |
| Numbers | 2 |
| More ▼ | |
Source
| Mathematics and Computer… | 5 |
Author
| Givan, Betty | 1 |
| Haggard, Paul W. | 1 |
| Joyner, Virginia G. | 1 |
| Karr, Rosemary | 1 |
| Levine, Deborah | 1 |
| Rising, Gerald | 1 |
| Schmalz, Rosemary | 1 |
| Schoaff, Eileen | 1 |
Publication Type
| Journal Articles | 5 |
| Guides - Classroom - Teacher | 2 |
| Reports - Descriptive | 2 |
| Computer Programs | 1 |
| Guides - General | 1 |
Education Level
Audience
| Practitioners | 4 |
| Teachers | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedSchoaff, Eileen; Rising, Gerald – Mathematics and Computer Education, 1990
Describes examples of rational representation as a guide for translating terminology and information encountered in manuals for computers. Discusses four limitations of the representation. (YP)
Descriptors: Algorithms, Computation, Decimal Fractions, Mathematical Applications
Peer reviewedJoyner, Virginia G.; Haggard, Paul W. – Mathematics and Computer Education, 1990
Discusses how to express an n factorial as a product of powers of primes. Provides two examples and answers. Presents four related suggestions. (YP)
Descriptors: Algorithms, College Mathematics, Computation, Division
Peer reviewedSchmalz, Rosemary – Mathematics and Computer Education, 1987
Presented are the mathematical explanation of the algorithm for representing rational numbers in base two, paper-and-pencil methods for producing the representation, some patterns in these representations, and pseudocode for computer programs to explore these patterns. (MNS)
Descriptors: Algorithms, College Mathematics, Computer Software, Higher Education
Peer reviewedLevine, Deborah – Mathematics and Computer Education, 1983
The Euclidean algorithm for finding the greatest common divisor is presented. (MNS)
Descriptors: Algorithms, College Mathematics, Computation, Higher Education
Peer reviewedGivan, Betty; Karr, Rosemary – Mathematics and Computer Education, 1988
The author presents two examples of lattice multiplication followed by a computer algorithm to perform this multiplication. The algorithm is given in psuedocode but could easily be given in Pascal. (PK)
Descriptors: Algorithms, College Mathematics, Computer Assisted Instruction, Computer Software


