NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 91 to 105 of 116 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Giurfa, Martin; Malun, Dagmar – Learning & Memory, 2004
The present work introduces a form of associative mechanosensory conditioning of the proboscis extension reflex (PER) in honeybees. In our paradigm, harnessed honeybees learn the elemental association between mechanosensory, antennal stimulation and a reward of sucrose solution delivered to the proboscis. Thereafter, bees extend their proboscis to…
Descriptors: Models, Cues, Stimulation, Classical Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto – Learning & Memory, 2006
The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…
Descriptors: Long Term Memory, Animals, Anatomy, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, Laura; Wright, William G.; Hoover, Brian A.; Nguyen, Hoang – Learning & Memory, 2006
Much recent research on mechanisms of learning and memory focuses on the role of heterosynaptic neuromodulatory signaling. Such neuromodulation appears to stabilize Hebbian synaptic changes underlying associative learning, thereby extending memory. Previous comparisons of three related sea-hares (Mollusca, Opisthobranchia) uncovered interspecific…
Descriptors: Classical Conditioning, Memory, Associative Learning, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Ross, Robert S.; McGaughy, Jill; Eichenbaum, Howard – Learning & Memory, 2005
The social transmission of food preference task (STFP) has been used to examine the involvement of the hippocampus in learning and memory for a natural odor-odor association. However, cortical involvement in STFP has not been extensively studied. The orbitofrontal cortex (OFC) is important in odor-guided learning, and cholinergic depletion of the…
Descriptors: Associative Learning, Animals, Interpersonal Relationship, Sexuality
Peer reviewed Peer reviewed
Direct linkDirect link
Kerfoot, Erin C.; Agarwal, Isha; Lee, Hongjoo J.; Holland, Peter C. – Learning & Memory, 2007
Through associative learning, cues for biologically significant reinforcers such as food may gain access to mental representations of those reinforcers. Here, we used devaluation procedures, behavioral assessment of hedonic taste-reactivity responses, and measurement of immediate-early gene (IEG) expression to show that a cue for food engages…
Descriptors: Cues, Behavioral Science Research, Memory, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Bermudez-Rattoni, Federico; Ramirez-Lugo, Leticia; Zavala-Vega, Sergio – Learning & Memory, 2006
Animals recognize a taste cue as aversive when it has been associated with post-ingestive malaise; this associative learning is known as conditioned taste aversion (CTA). When an animal consumes a new taste and no negative consequences follow, it becomes recognized as a safe signal, leading to an increase in its consumption in subsequent…
Descriptors: Memory, Associative Learning, Scientific Research, Ethology
Peer reviewed Peer reviewed
Direct linkDirect link
Broussard, Dianne M.; Kassardjian, Charles D. – Learning & Memory, 2004
Motor learning is a very basic, essential form of learning that appears to share common mechanisms across different motor systems. We evaluate and compare a few conceptual models for learning in a relatively simple neural system, the vestibulo-ocular reflex (VOR) of vertebrates. We also compare the different animal models that have been used to…
Descriptors: Associative Learning, Long Term Memory, Brain, Perceptual Motor Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Kourrich, Said; Manrique, Christine; Salin, Pascal; Mourre, Christiane – Learning & Memory, 2005
Voltage-gated potassium channels (Kv) are critically involved in learning and memory processes. It is not known, however, whether the expression of the Kv1.1 subunit, constituting Kv1 channels, can be specifically regulated in brain areas important for learning and memory processing. Radioactive in situ hybridization was used to evaluate the…
Descriptors: Memory, Associative Learning, Animals, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Stone, Martha E.; Grimes, Brandon S.; Katz, Donald B. – Learning & Memory, 2005
Learning tasks are typically thought to be either hippocampal-dependent (impaired by hippocampal lesions) or hippocampal-independent (indifferent to hippocampal lesions). Here, we show that conditioned taste aversion (CTA) learning fits into neither of these categories. Rats were trained to avoid two taste stimuli, one novel and one familiar.…
Descriptors: Animals, Training, Memory, Associative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Crow, Terry – Learning & Memory, 2004
The less-complex central nervous system of many invertebrates make them attractive for not only the molecular analysis of the associative learning and memory, but also in determining how neural circuits are modified by learning to generate changes in behavior. The nudibranch mollusk "Hermissenda crassicornis" is a preparation that has contributed…
Descriptors: Stimuli, Identification, Classical Conditioning, Anatomy
Peer reviewed Peer reviewed
Direct linkDirect link
Schott, Bjorn H.; Sellner, Daniela B.; Lauer, Corinna-J.; Habib, Reza; Frey, Julietta U.; Guderian, Sebastian; Heinze, Hans-Jochen; Duzel, Emrah – Learning & Memory, 2004
Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study,…
Descriptors: Young Adults, Memory, Neurological Organization, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Ohno, Masuo; Tseng, Wilbur; Silva, Alcino J.; Disterhoft, John F. – Learning & Memory, 2005
Little is known about signaling mechanisms underlying temporal associative learning. Here, we show that mice with a targeted point mutation that prevents autophosphorylation of [alpha]CaMKII ([alpha]CaMKII[superscript T286A]) learn trace eyeblink conditioning normally. This forms a sharp contrast to the severely impaired spatial learning in the…
Descriptors: Conditioning, Animals, Associative Learning, Eye Movements
Peer reviewed Peer reviewed
Direct linkDirect link
Michels, Birgit; Diegelmann, Soren; Tanimoto, Hiromu; Schwenkert, Isabell; Buchner, Erich; Gerber, Bertram – Learning & Memory, 2005
Synapsins are evolutionarily conserved, highly abundant vesicular phosphoproteins in presynaptic terminals. They are thought to regulate the recruitment of synaptic vesicles from the reserve pool to the readily-releasable pool, in particular when vesicle release is to be maintained at high spiking rates. As regulation of transmitter release is a…
Descriptors: Animals, Associative Learning, Role, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Colon-Cesario, Wanda I.; Martinez-Montemayor, Michelle M.; Morales, Sohaira; Felix, Jahaira; Cruz, Juan; Adorno, Monique; Pereira, Lixmar; Colon, Nydia; Maldonado-Vlaar, Carmen S.; Pena de Ortiz, Sandra – Learning & Memory, 2006
Nurr1 expression is up-regulated in the brain following associative learning experiences, but its relevance to cognitive processes remains unclear. In these studies, rats initially received bilateral hippocampal infusions of control or antisense oligodeoxynucleotides (ODNs) 1 hour prior to training in a holeboard spatial discrimination task. Such…
Descriptors: Cognitive Processes, Discrimination Learning, Animals, Associative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H. – Learning & Memory, 2005
In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…
Descriptors: Reinforcement, Logical Thinking, Operant Conditioning, Classical Conditioning
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8