Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 20 |
Descriptor
| Genetics | 27 |
| Neurology | 27 |
| Memory | 17 |
| Animals | 11 |
| Brain | 11 |
| Brain Hemisphere Functions | 9 |
| Conditioning | 8 |
| Fear | 8 |
| Neurological Organization | 7 |
| Biochemistry | 6 |
| Learning Processes | 6 |
| More ▼ | |
Source
| Learning & Memory | 27 |
Author
Publication Type
| Journal Articles | 27 |
| Reports - Research | 23 |
| Reports - Descriptive | 3 |
| Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kats, Ilona R.; Klann, Eric – Learning & Memory, 2019
Formation of eukaryotic initiation factor 4F (eIF4F) is widely considered to be the rate-limiting step in cap-dependent translation initiation. Components of eIF4F are often up-regulated in various cancers, and much work has been done to elucidate the role of each of the translation initiation factors in cancer cell growth and survival. In fact,…
Descriptors: Cancer, Brain, Biochemistry, Cytology
Maheau, Marissa E.; Ressler, Kerry J. – Learning & Memory, 2017
The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…
Descriptors: Genetics, Emotional Development, Stress Variables, Anxiety Disorders
Aten, Sydney; Hansen, Katelin F.; Snider, Kaitlin; Wheaton, Kelin; Kalidindi, Anisha; Garcia, Ashley; Alzate-Correa, Diego; Hoyt, Kari R.; Obrietan, Karl – Learning & Memory, 2018
The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences…
Descriptors: Neurology, Brain Hemisphere Functions, Memory, Animals
Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald – Learning & Memory, 2016
Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…
Descriptors: Neurology, Brain Hemisphere Functions, Physiology, Stimulation
Meyer, Mariah A. A.; Corcoran, Kevin A.; Chen, Helen J.; Gallego, Sonia; Li, Guanguan; Tiruveedhula, Veda V.; Cook, James M.; Radulovic, Jelena – Learning & Memory, 2017
Retrieval of fear memories can be state-dependent, meaning that they are best retrieved if the brain states at encoding and retrieval are similar. Such states can be induced by activating extrasynaptic ?-aminobutyric acid type A receptors (GABAAR) with the broad a-subunit activator gaboxadol. However, the circuit mechanisms and specific subunits…
Descriptors: Neurology, Brain, Brain Hemisphere Functions, Fear
Ferrara, Nicole C.; Cullen, Patrick K.; Pullins, Shane P.; Rotondo, Elena K.; Helmstetter, Fred J. – Learning & Memory, 2017
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity…
Descriptors: Fear, Brain, Memory, Discrimination Learning
Goode, Travis D.; Maren, Stephen – Learning & Memory, 2017
Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective…
Descriptors: Learning Processes, Fear, Brain, Neurology
Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren; Obrietan, Karl – Learning & Memory, 2016
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each…
Descriptors: Memory, Brain Hemisphere Functions, Neurological Impairments, Neurology
Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter – Learning & Memory, 2016
Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…
Descriptors: Physiology, Neurological Organization, Cognitive Processes, Genetics
Lykken, Christine; Kentros, Clifford G. – Learning & Memory, 2014
Understanding the neural mechanisms underlying learning and memory in the entorhinal-hippocampal circuit is a central challenge of systems neuroscience. For more than 40 years, electrophysiological recordings in awake, behaving animals have been used to relate the receptive fields of neurons in this circuit to learning and memory. However, the…
Descriptors: Learning, Memory, Neurology, Physiology
Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z. – Learning & Memory, 2015
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…
Descriptors: Long Term Memory, Brain Hemisphere Functions, Neurological Organization, Maintenance
Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning – Learning & Memory, 2013
Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…
Descriptors: Memory, Anatomy, Brain Hemisphere Functions, Neurology
Sakai, Takaomi; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro – Learning & Memory, 2012
In addition to its established function in the regulation of circadian rhythms, the "Drosophila" gene "period" ("per") also plays an important role in processing long-term memory (LTM). Here, we used courtship conditioning as a learning paradigm and revealed that (1) overexpression and knocking down of "per" in subsets of brain neurons enhance and…
Descriptors: Genetics, Long Term Memory, Sleep, Entomology
Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.; Korzus, Edward – Learning & Memory, 2014
The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required…
Descriptors: Neurological Organization, Neurology, Fear, Memory
Lebeau, Genevieve; Miller, Linda C.; Tartas, Maylis; McAdam, Robyn; Laplante, Isabel; Badeaux, Frederique; DesGroseillers, Luc; Sossin, Wayne S.; Lacaille, Jean-Claude – Learning & Memory, 2011
The two members of the Staufen family of RNA-binding proteins, Stau1 and Stau2, are present in distinct ribonucleoprotein complexes and associate with different mRNAs. Stau1 is required for protein synthesis-dependent long-term potentiation (L-LTP) in hippocampal pyramidal cells. However, the role of Stau2 in synaptic plasticity remains…
Descriptors: Neurological Organization, Brain, Genetics, Molecular Structure
Previous Page | Next Page ยป
Pages: 1 | 2
Peer reviewed
Direct link
