NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Keiser, Ashley A.; Wood, Marcelo A. – Learning & Memory, 2019
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression…
Descriptors: Memory, Gender Differences, Molecular Structure, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Hegde, Ashok N.; Smith, Spencer G. – Learning & Memory, 2019
Formation of long-term synaptic plasticity that underlies long-term memory requires new protein synthesis. Years of research has elucidated some of the transcriptional and translational mechanisms that contribute to the production of new proteins. Early research on transcription focused on the transcription factor cAMP-responsive element binding…
Descriptors: Memory, Brain Hemisphere Functions, Biochemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Heuer, Sarah E.; Neuner, Sarah M.; Hadad, Niran; O'Connell, Kristen M. S.; Williams, Robert W.; Philip, Vivek M.; Gaiteri, Chris; Kaczorowski, Catherine C. – Learning & Memory, 2020
Individual differences in cognitive decline during normal aging and Alzheimer's disease (AD) are common, but the molecular mechanisms underlying these distinct outcomes are not fully understood. We utilized a combination of genetic, molecular, and behavioral data from a mouse population designed to model human variation in cognitive outcomes to…
Descriptors: Cognitive Processes, Resilience (Psychology), Alzheimers Disease, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Shu, Guanhua; Kramár, Enikö A.; López, Alberto J.; Huynh, Grace; Wood, Marcelo A.; Kwapis, Janine L. – Learning & Memory, 2018
Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific…
Descriptors: Long Term Memory, Genetics, Molecular Structure, Neurological Impairments
Peer reviewed Peer reviewed
Direct linkDirect link
Marchal, Paul; Villar, Maria Eugenia; Geng, Haiyang; Arrufat, Patrick; Combe, Maud; Viola, Haydée; Massou, Isabelle; Giurfa, Martin – Learning & Memory, 2019
Honeybees are a standard model for the study of appetitive learning and memory. Yet, fewer attempts have been performed to characterize aversive learning and memory in this insect and uncover its molecular underpinnings. Here, we took advantage of the positive phototactic behavior of bees kept away from the hive in a dark environment and…
Descriptors: Inhibition, Learning Processes, Memory, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Briskin-Luchinsky, Valeria; Levy, Roi; Halfon, Maayan; Susswein, Abraham J. – Learning & Memory, 2018
Training "Aplysia" with inedible food for a period that is too brief to produce long-term memory becomes effective in producing memory when training is paired with a nitric oxide (NO) donor. Lip stimulation for the same period of time paired with an NO donor is ineffective. Using qPCR, we examined molecular correlates of brief training…
Descriptors: Animals, Training, Food, Long Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Margaret; Travaglia, Alessio; Pollonini, Gabriella; Fedele, Giuseppe; Alberini, Cristina M. – Learning & Memory, 2018
The medial prefrontal cortex (mPFC) plays a critical role in complex brain functions including decision-making, integration of emotional, and cognitive aspects in memory processing and memory consolidation. Because relatively little is known about the molecular mechanisms underlying its development, we quantified rat mPFC basal expression levels…
Descriptors: Animals, Brain Hemisphere Functions, Biochemistry, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C. – Learning & Memory, 2017
We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…
Descriptors: Memory, Biochemistry, Brain Hemisphere Functions, Role
Peer reviewed Peer reviewed
Direct linkDirect link
Briggs, Sherri B.; Hafenbreidel, Madalyn; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A. – Learning & Memory, 2018
Using pharmacologic and genetic approaches targeting actin or the actin-driving molecular motor, nonmuscle myosin II (NMII), we previously discovered an immediate, retrieval-independent, and long-lasting disruption of methamphetamine- (METH-) and amphetamine-associated memories. A single intrabasolateral amygdala complex infusion or systemic…
Descriptors: Role, Memory, Genetics, Drug Therapy
Peer reviewed Peer reviewed
Direct linkDirect link
Smolen, Paul; Baxter, Douglas A.; Byrne, John H. – Learning & Memory, 2016
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may…
Descriptors: Long Term Memory, Models, Molecular Structure, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Ardiel, Evan L.; Giles, Andrew C.; Yu, Alex J.; Lindsay, Theodore H.; Lockery, Shawn R.; Rankin, Catharine H. – Learning & Memory, 2016
Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like "Caenorhabditis elegans," can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral…
Descriptors: Habituation, Computer Software, Stimulation, Behavior Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z. – Learning & Memory, 2015
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…
Descriptors: Long Term Memory, Brain Hemisphere Functions, Neurological Organization, Maintenance
Peer reviewed Peer reviewed
Direct linkDirect link
Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M. – Learning & Memory, 2014
Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…
Descriptors: Molecular Structure, Brain Hemisphere Functions, Sensory Experience, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Lebeau, Genevieve; Miller, Linda C.; Tartas, Maylis; McAdam, Robyn; Laplante, Isabel; Badeaux, Frederique; DesGroseillers, Luc; Sossin, Wayne S.; Lacaille, Jean-Claude – Learning & Memory, 2011
The two members of the Staufen family of RNA-binding proteins, Stau1 and Stau2, are present in distinct ribonucleoprotein complexes and associate with different mRNAs. Stau1 is required for protein synthesis-dependent long-term potentiation (L-LTP) in hippocampal pyramidal cells. However, the role of Stau2 in synaptic plasticity remains…
Descriptors: Neurological Organization, Brain, Genetics, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Philips, Gary T.; Sherff, Carolyn M.; Menges, Steven A.; Carew, Thomas J. – Learning & Memory, 2011
The defensive withdrawal reflexes of "Aplysia californica" have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have…
Descriptors: Memory, Genetics, Animals, Neurological Organization
Previous Page | Next Page »
Pages: 1  |  2