NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Worsley, Marcelo; Martinez-Maldonado, Roberto; D'Angelo, Cynthia – Journal of Learning Analytics, 2021
Multimodal learning analytics (MMLA) has increasingly been a topic of discussion within the learning analytics community. The Society of Learning Analytics Research is home to the CrossMMLA Special Interest Group and regularly hosts workshops on MMLA during the Learning Analytics Summer Institute (LASI). In this paper, we articulate a set of 12…
Descriptors: Learning Analytics, Artificial Intelligence, Data Collection, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moon, Jewoong; Ke, Fengfeng; Sokolikj, Zlatko; Dahlstrom-Hakki, Ibrahim – Journal of Learning Analytics, 2022
Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student distress states during educational gameplay. We collected and analyzed 1,145 data instances, sampled from a total of 31 middle-school students' audio- and video-recorded gameplay sessions. We conducted data wrangling with student gameplay…
Descriptors: Learning Analytics, Stress Variables, Educational Games, Middle School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Faucon, Louis; Olsen, Jennifer K.; Haklev, Stian; Dillenbourg, Pierre – Journal of Learning Analytics, 2020
In classrooms, some transitions between activities impose (quasi-)synchronicity, meaning there is a need for learners to move between activities at the same time. To make real-time decisions about when to move to the next activity, teachers need to be able to balance the progress of their students as they work at different paces. In this paper, we…
Descriptors: Classroom Techniques, Prediction, Learning Activities, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Casey, Kevin – Journal of Learning Analytics, 2017
Learning analytics offers insights into student behaviour and the potential to detect poor performers before they fail exams. If the activity is primarily online (for example computer programming), a wealth of low-level data can be made available that allows unprecedented accuracy in predicting which students will pass or fail. In this paper, we…
Descriptors: Keyboarding (Data Entry), Educational Research, Data Collection, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dowell, Nia M. M.; Graesser, Arthur C.; Cai, Zhiqiang – Journal of Learning Analytics, 2016
The goal of this article is to preserve and distribute the information presented at the LASI (2014) workshop on Coh-Metrix, a theoretically grounded, computational linguistics facility that analyzes texts on multiple levels of language and discourse. The workshop focused on the utility of Coh-Metrix in discourse theory and educational practice. We…
Descriptors: Discourse Analysis, Workshops, Computational Linguistics, Guidelines
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gray, Geraldine; McGuinness, Colm; Owende, Philip; Hofmann, Markus – Journal of Learning Analytics, 2016
This paper reports on a study to predict students at risk of failing based on data available prior to commencement of first year. The study was conducted over three years, 2010 to 2012, on a student population from a range of academic disciplines, n=1,207. Data was gathered from both student enrollment data and an online, self-reporting,…
Descriptors: Prediction, At Risk Students, Academic Failure, College Freshmen