Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 3 |
Descriptor
Source
| Journal of Learning Analytics | 3 |
Author
| Abigail T. Panter | 1 |
| Chaewon Lee | 1 |
| Everson, Howard T. | 1 |
| Jeffrey A. Greene | 1 |
| Jina Kang | 1 |
| Kathleen M. Gates | 1 |
| Krumm, Andrew | 1 |
| Lan Luo | 1 |
| Matthew L. Bernacki | 1 |
| Neisler, Julie | 1 |
| Robert D. Plumley | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 2 |
| Reports - Descriptive | 1 |
Education Level
| Higher Education | 2 |
| Postsecondary Education | 2 |
| High Schools | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Chaewon Lee; Lan Luo; Shelbi L. Kuhlmann; Robert D. Plumley; Abigail T. Panter; Matthew L. Bernacki; Jeffrey A. Greene; Kathleen M. Gates – Journal of Learning Analytics, 2025
The increasing use of learning management systems (LMSs) generates vast amounts of clickstream data, opening new avenues for predicting learner performance. Traditionally, LMS predictive analytics have relied on either supervised machine learning or Markov models to classify learners based on predicted learning outcomes. Machine learning excels at…
Descriptors: Electronic Learning, Prediction, Data Analysis, Artificial Intelligence
Krumm, Andrew; Everson, Howard T.; Neisler, Julie – Journal of Learning Analytics, 2022
This paper describes a partnership-based approach for analyzing data from a learning management system (LMS) used by students in grades 6-12. The goal of the partnership was to create indicators for the ways in which students navigated digital learning activities, referred to as playlists, that were comprised of resources, pre-assessments, and…
Descriptors: Learning Management Systems, Data Analysis, Electronic Learning, Student Behavior
Yiqiu Zhou; Jina Kang – Journal of Learning Analytics, 2023
Collaboration is a complex, multidimensional process; however, details of how multimodal features intersect and mediate group interactions have not been fully unpacked. Characterizing and analyzing the temporal patterns based on multimodal features is a challenging yet important work to advance our understanding of computer-supported collaborative…
Descriptors: Attention Control, Cooperative Learning, Data Analysis, Computer Assisted Instruction

Peer reviewed
