Publication Date
In 2025 | 1 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 13 |
Descriptor
Source
Journal of Learning Analytics | 13 |
Author
Linxuan Zhao | 2 |
Lixiang Yan | 2 |
Riordan Alfredo | 2 |
Roberto Martinez-Maldonado | 2 |
Vanessa Echeverria | 2 |
Adolfo Ruiz-Calleja | 1 |
Aleksandra Maslennikova | 1 |
Anna Monreale | 1 |
Daniela Rotelli | 1 |
Dragan Gasevic | 1 |
Dragan Gaševic | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 12 |
Reports - Evaluative | 1 |
Audience
Location
Estonia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Pargman, Teresa Cerratto; McGrath, Cormac; Viberg, Olga; Knight, Simon – Journal of Learning Analytics, 2023
The focus of ethics in learning analytics (LA) frameworks and guidelines is predominantly on procedural elements of data management and accountability. Another, less represented focus is on the duty to act and LA as a moral practice. Data feminism as a critical theoretical approach to data science practices may offer LA research and practitioners…
Descriptors: Learning Analytics, Responsibility, Feminism, Ethics
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Sohum Bhatt; Katrien Verbert; Wim Van Den Noortgate – Journal of Learning Analytics, 2024
Computational thinking (CT) is a concept of growing importance to pre-university education. Yet, CT is often assessed through results, rather than by looking at the CT process itself. Process-based assessments, or assessments that model how a student completed a task, could instead investigate the process of CT as a formative assessment. In this…
Descriptors: Learning Analytics, Student Evaluation, Computation, Thinking Skills
Pankaj Chejara; Luis P. Prieto; Yannis Dimitriadis; Maria Jesus Rodriguez-Triana; Adolfo Ruiz-Calleja; Reet Kasepalu; Shashi Kant Shankar – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) research has shown the feasibility of building automated models of collaboration quality using artificial intelligence (AI) techniques (e.g., supervised machine learning (ML)), thus enabling the development of monitoring and guiding tools for computer-supported collaborative learning (CSCL). However, the…
Descriptors: Learning Analytics, Attribution Theory, Acoustics, Artificial Intelligence
Riordan Alfredo; Vanessa Echeverria; Linxuan Zhao; LuEttaMae Lawrence; Jie Xiang Fan; Lixiang Yan; Xinyu Li; Zachari Swiecki; Dragan Gaševic; Roberto Martinez-Maldonado – Journal of Learning Analytics, 2024
Despite growing interest in applying human-centred design methods to create learning analytics (LA) systems, most efforts have concentrated on initial design phases, with limited exploration of how LA tools and practices can coevolve during the actual learning and teaching activities. This paper examines how a human-centred LA dashboard can be…
Descriptors: Learning Analytics, Learning Management Systems, Artificial Intelligence, Computer Software
Jonathan K. Foster; Peter Youngs; Rachel van Aswegen; Samarth Singh; Ginger S. Watson; Scott T. Acton – Journal of Learning Analytics, 2024
Despite a tremendous increase in the use of video for conducting research in classrooms as well as preparing and evaluating teachers, there remain notable challenges to using classroom videos at scale, including time and financial costs. Recent advances in artificial intelligence could make the process of analyzing, scoring, and cataloguing videos…
Descriptors: Learning Analytics, Automation, Classification, Artificial Intelligence
Yueqiao Jin; Vanessa Echeverria; Lixiang Yan; Linxuan Zhao; Riordan Alfredo; Yi-Shan Tsai; Dragan Gasevic; Roberto Martinez-Maldonado – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) integrates novel sensing technologies and artificial intelligence algorithms, providing opportunities to enhance student reflection during complex, collaborative learning experiences. Although recent advancements in MMLA have shown its capability to generate insights into diverse learning behaviours across…
Descriptors: Learning Analytics, Accountability, Ethics, Artificial Intelligence
Laura Froehlich; Sebastian Weydner-Volkmann – Journal of Learning Analytics, 2024
Educational disparities between traditional and non-traditional student groups in higher distance education can potentially be reduced by alleviating social identity threat and strengthening students' sense of belonging in the academic context. We present a use case of how Learning Analytics and Machine Learning can be applied to develop and…
Descriptors: Learning Analytics, Electronic Learning, Distance Education, Equal Education
Marek Hatala; Sina Nazeri – Journal of Learning Analytics, 2024
An essential part of making dashboards more effective in motivating students and leading to desirable behavioural change is knowing what information to communicate to the student and how to frame and present it. Most of the research studying dashboards' impact on learning analyzes learning indicators of students as a group. Understanding how a…
Descriptors: Educational Technology, Information Dissemination, Learning Processes, Algorithms
Aleksandra Maslennikova; Daniela Rotelli; Anna Monreale – Journal of Learning Analytics, 2023
Students organize and manage their own learning time, choosing when, what, and how to study due to the flexibility of online learning. Each person has unique learning habits that define their behaviours and distinguish them from others. To investigate the temporal behaviour of students in online learning environments, we seek to identify suitable…
Descriptors: Learning Analytics, Online Courses, Time Management, Self Management
Meaney, Michael J.; Fikes, Tom – Journal of Learning Analytics, 2023
This paper leverages cluster analysis to provide insight into how traditionally underrepresented learners engage with entry-level massive open online courses (MOOCs) intended to lower the barrier to university enrolment, produced by a major research university in the United States. From an initial sample of 260,239 learners, we cluster analyze a…
Descriptors: MOOCs, Ethics, Equal Education, Socioeconomic Status
Pishtari, Gerti; Prieto, Luis P.; Rodriguez-Triana, Maria Jesus; Martinez-Maldonado, Roberto – Journal of Learning Analytics, 2022
This research was triggered by the identified need in literature for large-scale studies about the kinds of designs that teachers create for mobile learning (m-learning). These studies require analyses of large datasets of learning designs. The common approach followed by researchers when analyzing designs has been to manually classify them…
Descriptors: Scaling, Classification, Context Effect, Telecommunications
Zhongzhou Chen; Tom Zhang; Michelle Taub – Journal of Learning Analytics, 2024
The current study measures the extent to which students' self-regulated learning tactics and learning outcomes change as the result of a deliberate, data-driven improvement in the learning design of mastery-based online learning modules. In the original design, students were required to attempt the assessment once before being allowed to access…
Descriptors: Learning Analytics, Algorithms, Instructional Materials, Course Content