Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Growth Models | 2 |
| Hierarchical Linear Modeling | 2 |
| Measurement | 2 |
| Bayesian Statistics | 1 |
| Computation | 1 |
| Educational Experiments | 1 |
| Effect Size | 1 |
| Models | 1 |
| Monte Carlo Methods | 1 |
| Prediction | 1 |
| Probability | 1 |
| More ▼ | |
Source
| Journal of Experimental… | 2 |
Publication Type
| Journal Articles | 2 |
| Reports - Descriptive | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Li, Wei; Konstantopoulos, Spyros – Journal of Experimental Education, 2019
Education experiments frequently assign students to treatment or control conditions within schools. Longitudinal components added in these studies (e.g., students followed over time) allow researchers to assess treatment effects in average rates of change (e.g., linear or quadratic). We provide methods for a priori power analysis in three-level…
Descriptors: Research Design, Statistical Analysis, Sample Size, Effect Size

Peer reviewed
Direct link
