NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2019
Multilevel modeling has been utilized for combining single-case experimental design (SCED) data assuming simple level-1 error structures. The purpose of this study is to compare various multilevel analysis approaches for handling potential complexity in the level-1 error structure within SCED data, including approaches assuming simple and complex…
Descriptors: Hierarchical Linear Modeling, Synthesis, Data Analysis, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2016
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Computation, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Hembry, Ian; Bunuan, Rommel; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2015
A multilevel logistic model for estimating a nonlinear trajectory in a multiple-baseline design is introduced. The model is applied to data from a real multiple-baseline design study to demonstrate interpretation of relevant parameters. A simple change-in-levels (?"Levels") model and a model involving a quadratic function…
Descriptors: Computation, Research Design, Data, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2014
One approach for combining single-case data involves use of multilevel modeling. In this article, the authors use a Monte Carlo simulation study to inform applied researchers under which realistic conditions the three-level model is appropriate. The authors vary the value of the immediate treatment effect and the treatment's effect on the time…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Case Studies, Research Design