NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational and…28
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Molenaar, Dylan; Cúri, Mariana; Bazán, Jorge L. – Journal of Educational and Behavioral Statistics, 2022
Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and…
Descriptors: Item Response Theory, Data, Responses, Intervals
Yajuan Si; Roderick J. A. Little; Ya Mo; Nell Sedransk – Journal of Educational and Behavioral Statistics, 2023
Nonresponse bias is a widely prevalent problem for data on education. We develop a ten-step exemplar to guide nonresponse bias analysis (NRBA) in cross-sectional studies and apply these steps to the Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011. A key step is the construction of indices of nonresponse bias based on proxy…
Descriptors: Educational Assessment, Response Rates (Questionnaires), Bias, Children
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Brauer, Kay – Journal of Educational and Behavioral Statistics, 2022
The generalized S-X[superscript 2]-test is a test of item fit for items with polytomous responses format. The test is based on a comparison of the observed and expected number of responses in strata defined by the test score. In this article, we make four contributions. We demonstrate that the performance of the generalized S-X[superscript 2]-test…
Descriptors: Goodness of Fit, Test Items, Statistical Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Weimeng; Liu, Yang; Liu, Hongyun – Journal of Educational and Behavioral Statistics, 2022
Differential item functioning (DIF) occurs when the probability of endorsing an item differs across groups for individuals with the same latent trait level. The presence of DIF items may jeopardize the validity of an instrument; therefore, it is crucial to identify DIF items in routine operations of educational assessment. While DIF detection…
Descriptors: Test Bias, Test Items, Equated Scores, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Demirkaya, Onur; Bezirhan, Ummugul; Zhang, Jinming – Journal of Educational and Behavioral Statistics, 2023
Examinees with item preknowledge tend to obtain inflated test scores that undermine test score validity. With the availability of process data collected in computer-based assessments, the research on detecting item preknowledge has progressed on using both item scores and response times. Item revisit patterns of examinees can also be utilized as…
Descriptors: Test Items, Prior Learning, Knowledge Level, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
Kuijpers, Renske E.; Visser, Ingmar; Molenaar, Dylan – Journal of Educational and Behavioral Statistics, 2021
Mixture models have been developed to enable detection of within-subject differences in responses and response times to psychometric test items. To enable mixture modeling of both responses and response times, a distributional assumption is needed for the within-state response time distribution. Since violations of the assumed response time…
Descriptors: Test Items, Responses, Reaction Time, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Jinnie – Journal of Educational and Behavioral Statistics, 2017
This article reviews PROC IRT, which was added to Statistical Analysis Software in 2014. We provide an introductory overview of a free version of SAS, describe what PROC IRT offers for item response theory (IRT) analysis and how one can use PROC IRT, and discuss how other SAS macros and procedures may compensate the IRT functionalities of PROC IRT.
Descriptors: Item Response Theory, Computer Software, Statistical Analysis, Computation
Oranje, Andreas; Kolstad, Andrew – Journal of Educational and Behavioral Statistics, 2019
The design and psychometric methodology of the National Assessment of Educational Progress (NAEP) is constantly evolving to meet the changing interests and demands stemming from a rapidly shifting educational landscape. NAEP has been built on strong research foundations that include conducting extensive evaluations and comparisons before new…
Descriptors: National Competency Tests, Psychometrics, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2017
An increasing concern of producers of educational assessments is fraudulent behavior during the assessment (van der Linden, 2009). Benefiting from item preknowledge (e.g., Eckerly, 2017; McLeod, Lewis, & Thissen, 2003) is one type of fraudulent behavior. This article suggests two new test statistics for detecting individuals who may have…
Descriptors: Test Items, Cheating, Testing Problems, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yanlou; Tian, Wei; Xin, Tao – Journal of Educational and Behavioral Statistics, 2016
The fit of cognitive diagnostic models (CDMs) to response data needs to be evaluated, since CDMs might yield misleading results when they do not fit the data well. Limited-information statistic M[subscript 2] and the associated root mean square error of approximation (RMSEA[subscript 2]) in item factor analysis were extended to evaluate the fit of…
Descriptors: Cognitive Measurement, Models, Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2016
Meijer and van Krimpen-Stoop noted that the number of person-fit statistics (PFSs) that have been designed for computerized adaptive tests (CATs) is relatively modest. This article partially addresses that concern by suggesting three new PFSs for CATs. The statistics are based on tests for a change point and can be used to detect an abrupt change…
Descriptors: Computer Assisted Testing, Adaptive Testing, Item Response Theory, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Ji Seung; Zheng, Xiaying – Journal of Educational and Behavioral Statistics, 2018
The purpose of this article is to introduce and review the capability and performance of the Stata item response theory (IRT) package that is available from Stata v.14, 2015. Using a simulated data set and a publicly available item response data set extracted from Programme of International Student Assessment, we review the IRT package from…
Descriptors: Item Response Theory, Item Analysis, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Camilli, Gregory; Fox, Jean-Paul – Journal of Educational and Behavioral Statistics, 2015
An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…
Descriptors: Factor Analysis, Item Response Theory, Grade 4, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Longjuan; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2015
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
Descriptors: Item Response Theory, Statistical Analysis, Goodness of Fit, Bayesian Statistics
Previous Page | Next Page »
Pages: 1  |  2