Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 8 |
| Since 2017 (last 10 years) | 26 |
| Since 2007 (last 20 years) | 80 |
Descriptor
Source
| Journal of Educational and… | 87 |
Author
| Schochet, Peter Z. | 5 |
| Moses, Tim | 3 |
| Reardon, Sean F. | 3 |
| Bonett, Douglas G. | 2 |
| Dorans, Neil J. | 2 |
| Fox, Jean-Paul | 2 |
| Goldstein, Harvey | 2 |
| Grund, Simon | 2 |
| Hansen, Ben B. | 2 |
| Hedges, Larry V. | 2 |
| Lockwood, J. R. | 2 |
| More ▼ | |
Publication Type
| Journal Articles | 87 |
| Reports - Research | 48 |
| Reports - Descriptive | 24 |
| Reports - Evaluative | 14 |
| Book/Product Reviews | 1 |
| Opinion Papers | 1 |
Education Level
Audience
Location
| Canada | 2 |
| Netherlands | 2 |
| United Kingdom (England) | 2 |
| Arizona | 1 |
| Brazil | 1 |
| Massachusetts | 1 |
| Michigan | 1 |
| Pennsylvania | 1 |
| Puerto Rico | 1 |
| South Korea | 1 |
| Tennessee | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 4 |
| Early Childhood Longitudinal… | 3 |
| Program for International… | 3 |
| Trends in International… | 2 |
| Center for Epidemiologic… | 1 |
| Hopkins Symptom Checklist | 1 |
What Works Clearinghouse Rating
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Journal of Educational and Behavioral Statistics, 2025
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Doran, Harold – Journal of Educational and Behavioral Statistics, 2023
This article is concerned with a subset of numerically stable and scalable algorithms useful to support computationally complex psychometric models in the era of machine learning and massive data. The subset selected here is a core set of numerical methods that should be familiar to computational psychometricians and considers whitening transforms…
Descriptors: Scaling, Algorithms, Psychometrics, Computation
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Joo, Seang-Hwane; Wang, Yan; Ferron, John; Beretvas, S. Natasha; Moeyaert, Mariola; Van Den Noortgate, Wim – Journal of Educational and Behavioral Statistics, 2022
Multiple baseline (MB) designs are becoming more prevalent in educational and behavioral research, and as they do, there is growing interest in combining effect size estimates across studies. To further refine the meta-analytic methods of estimating the effect, this study developed and compared eight alternative methods of estimating intervention…
Descriptors: Meta Analysis, Effect Size, Computation, Statistical Analysis
Huang, Francis L. – Journal of Educational and Behavioral Statistics, 2022
The presence of clustered data is common in the sociobehavioral sciences. One approach that specifically deals with clustered data but has seen little use in education is the generalized estimating equations (GEEs) approach. We provide a background on GEEs, discuss why it is appropriate for the analysis of clustered data, and provide worked…
Descriptors: Multivariate Analysis, Computation, Correlation, Error of Measurement
Bonett, Douglas G.; Price, Robert M., Jr. – Journal of Educational and Behavioral Statistics, 2020
In studies where the response variable is measured on a ratio scale, a ratio of means or medians provides a standardized measure of effect size that is an alternative to the popular standardized mean difference. Confidence intervals for ratios of population means and medians in independent-samples designs and paired-samples designs are proposed as…
Descriptors: Computation, Statistical Analysis, Mathematical Concepts, Effect Size
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Journal of Educational and Behavioral Statistics, 2023
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Keller, Bryan – Journal of Educational and Behavioral Statistics, 2020
Widespread availability of rich educational databases facilitates the use of conditioning strategies to estimate causal effects with nonexperimental data. With dozens, hundreds, or more potential predictors, variable selection can be useful for practical reasons related to communicating results and for statistical reasons related to improving the…
Descriptors: Nonparametric Statistics, Computation, Testing, Causal Models
Park, Soojin; Palardy, Gregory J. – Journal of Educational and Behavioral Statistics, 2020
Estimating the effects of randomized experiments and, by extension, their mediating mechanisms, is often complicated by treatment noncompliance. Two estimation methods for causal mediation in the presence of noncompliance have recently been proposed, the instrumental variable method (IV-mediate) and maximum likelihood method (ML-mediate). However,…
Descriptors: Computation, Compliance (Psychology), Maximum Likelihood Statistics, Statistical Analysis
Choi, Jinnie – Journal of Educational and Behavioral Statistics, 2017
This article reviews PROC IRT, which was added to Statistical Analysis Software in 2014. We provide an introductory overview of a free version of SAS, describe what PROC IRT offers for item response theory (IRT) analysis and how one can use PROC IRT, and discuss how other SAS macros and procedures may compensate the IRT functionalities of PROC IRT.
Descriptors: Item Response Theory, Computer Software, Statistical Analysis, Computation
Nestler, Steffen – Journal of Educational and Behavioral Statistics, 2018
The social relations model (SRM) is a mathematical model that can be used to analyze interpersonal judgment and behavior data. Typically, the SRM is applied to one (i.e., univariate SRM) or two variables (i.e., bivariate SRM), and parameter estimates are obtained by employing an analysis of variance method. Here, we present an extension of the SRM…
Descriptors: Mathematical Models, Interpersonal Relationship, Maximum Likelihood Statistics, Computation
Suk, Youmi; Kim, Jee-Seon; Kang, Hyunseung – Journal of Educational and Behavioral Statistics, 2021
There has been increasing interest in exploring heterogeneous treatment effects using machine learning (ML) methods such as causal forests, Bayesian additive regression trees, and targeted maximum likelihood estimation. However, there is little work on applying these methods to estimate treatment effects in latent classes defined by…
Descriptors: Artificial Intelligence, Statistical Analysis, Statistical Inference, Classification

Peer reviewed
Direct link
