Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 25 |
Descriptor
Computation | 30 |
Sample Size | 30 |
Statistical Analysis | 13 |
Error of Measurement | 9 |
Correlation | 8 |
Statistical Bias | 8 |
Monte Carlo Methods | 7 |
Bayesian Statistics | 6 |
Comparative Analysis | 6 |
Accuracy | 5 |
Effect Size | 5 |
More ▼ |
Source
Journal of Educational and… | 30 |
Author
Bonett, Douglas G. | 2 |
Hedges, Larry V. | 2 |
Price, Robert M. | 2 |
Afshartous, David | 1 |
Andersson, Björn | 1 |
Avi Feller | 1 |
Bellara, Aarti | 1 |
Benjamin Lu | 1 |
Berger, Moritz | 1 |
Blew, Edwin O. | 1 |
Borenstein, Michael | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Reports - Research | 19 |
Reports - Descriptive | 6 |
Reports - Evaluative | 5 |
Information Analyses | 1 |
Education Level
Elementary Education | 2 |
Grade 4 | 2 |
Adult Education | 1 |
Elementary Secondary Education | 1 |
Intermediate Grades | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 3 |
Pre Professional Skills Tests | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Andersson, Björn; Xin, Tao – Journal of Educational and Behavioral Statistics, 2021
The estimation of high-dimensional latent regression item response theory (IRT) models is difficult because of the need to approximate integrals in the likelihood function. Proposed solutions in the literature include using stochastic approximations, adaptive quadrature, and Laplace approximations. We propose using a second-order Laplace…
Descriptors: Item Response Theory, Computation, Regression (Statistics), Statistical Bias
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Journal of Educational and Behavioral Statistics, 2023
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
McCoach, D. Betsy; Rifenbark, Graham G.; Newton, Sarah D.; Li, Xiaoran; Kooken, Janice; Yomtov, Dani; Gambino, Anthony J.; Bellara, Aarti – Journal of Educational and Behavioral Statistics, 2018
This study compared five common multilevel software packages via Monte Carlo simulation: HLM 7, M"plus" 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4 to determine how the programs differ in estimation accuracy and speed, as well as convergence, when modeling multiple randomly varying slopes of different magnitudes. Simulated data…
Descriptors: Hierarchical Linear Modeling, Computer Software, Comparative Analysis, Monte Carlo Methods
Sweet, Tracy M.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 2016
The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…
Descriptors: Intervention, Social Networks, Statistical Analysis, Computation
Hedges, Larry V.; Borenstein, Michael – Journal of Educational and Behavioral Statistics, 2014
The precision of estimates of treatment effects in multilevel experiments depends on the sample sizes chosen at each level. It is often desirable to choose sample sizes at each level to obtain the smallest variance for a fixed total cost, that is, to obtain optimal sample allocation. This article extends previous results on optimal allocation to…
Descriptors: Experiments, Research Design, Sample Size, Correlation
Jan, Show-Li; Shieh, Gwowen – Journal of Educational and Behavioral Statistics, 2014
The analysis of variance (ANOVA) is one of the most frequently used statistical analyses in practical applications. Accordingly, the single and multiple comparison procedures are frequently applied to assess the differences among mean effects. However, the underlying assumption of homogeneous variances may not always be tenable. This study…
Descriptors: Sample Size, Statistical Analysis, Computation, Probability
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Tipton, Elizabeth; Pustejovsky, James E. – Journal of Educational and Behavioral Statistics, 2015
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance…
Descriptors: Meta Analysis, Effect Size, Computation, Robustness (Statistics)
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Bonett, Douglas G.; Price, Robert M. – Journal of Educational and Behavioral Statistics, 2012
Adjusted Wald intervals for binomial proportions in one-sample and two-sample designs have been shown to perform about as well as the best available methods. The adjusted Wald intervals are easy to compute and have been incorporated into introductory statistics courses. An adjusted Wald interval for paired binomial proportions is proposed here and…
Descriptors: Computation, Statistical Analysis, Data, Sample Size
Merkle, Edgar C. – Journal of Educational and Behavioral Statistics, 2011
Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted…
Descriptors: Statistical Analysis, Factor Analysis, Bayesian Statistics, Comparative Analysis
Previous Page | Next Page »
Pages: 1 | 2