NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Feldman, Betsy J.; Rabe-Hesketh, Sophia – Journal of Educational and Behavioral Statistics, 2012
In longitudinal education studies, assuming that dropout and missing data occur completely at random is often unrealistic. When the probability of dropout depends on covariates and observed responses (called "missing at random" [MAR]), or on values of responses that are missing (called "informative" or "not missing at random" [NMAR]),…
Descriptors: Dropouts, Academic Achievement, Longitudinal Studies, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry – Journal of Educational and Behavioral Statistics, 2007
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Descriptors: Foreign Countries, Structural Equation Models, Markov Processes, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, J. R.; McCaffrey, Daniel F.; Mariano, Louis T.; Setodji, Claude – Journal of Educational and Behavioral Statistics, 2007
There is increased interest in value-added models relying on longitudinal student-level test score data to isolate teachers' contributions to student achievement. The complex linkage of students to teachers as students progress through grades poses both substantive and computational challenges. This article introduces a multivariate Bayesian…
Descriptors: Urban Schools, Academic Persistence, Reading Achievement, Mathematics Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David – Journal of Educational and Behavioral Statistics, 2005
This article considers the problem of estimating dynamic linear regression models when the data are generated from finite mixture probability density function where the mixture components are characterized by different dynamic regression model parameters. Specifically, conventional linear models assume that the data are generated by a single…
Descriptors: Regression (Statistics), Modeling (Psychology), Responses, Models