Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
Source
| Journal of Educational and… | 3 |
Author
| Choi, Kilchan | 1 |
| Guo, Xiaojun | 1 |
| Harring, Jeffrey R. | 1 |
| Lee, Daniel Y. | 1 |
| Li, Yujun | 1 |
| Lim, Nelson | 1 |
| Luo, Guanzhong | 1 |
| Luo, Zhaosheng | 1 |
| Novak, John | 1 |
| Seltzer, Michael | 1 |
| Shu, Tian | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 2 |
| Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Peer reviewedSeltzer, Michael; Novak, John; Choi, Kilchan; Lim, Nelson – Journal of Educational and Behavioral Statistics, 2002
Examines the ways in which level-1 outliers can impact the estimation of fixed effects and random effects in hierarchical models (HMs). Also outlines and illustrates the use of Markov Chain Monte Carlo algorithms for conducting sensitivity analyses under "t" level-1 assumptions, including algorithms for settings in which the degrees of…
Descriptors: Algorithms, Estimation (Mathematics), Markov Processes, Monte Carlo Methods

Direct link
