NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rickles, Jordan H.; Seltzer, Michael – Journal of Educational and Behavioral Statistics, 2014
When nonrandom treatments occur across sites, within-site matching (WM) is often desirable. This approach, however, can significantly reduce treatment group sample size and exclude substantively important subgroups. To limit these drawbacks, we extend a matching approach developed by Stuart and Rubin to a multisite study. We demonstrate the…
Descriptors: Computation, Probability, Observation, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2013
This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…
Descriptors: Computation, Causal Models, Statistical Inference, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rhoads, Christopher H. – Journal of Educational and Behavioral Statistics, 2011
Experimental designs that randomly assign entire clusters of individuals (e.g., schools and classrooms) to treatments are frequently advocated as a way of guarding against contamination of the estimated average causal effect of treatment. However, in the absence of contamination, experimental designs that randomly assign intact clusters to…
Descriptors: Educational Research, Research Design, Effect Size, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2013
In education randomized control trials (RCTs), the misreporting of student outcome data could lead to biased estimates of average treatment effects (ATEs) and their standard errors. This article discusses a statistical model that adjusts for misreported binary outcomes for two-level, school-based RCTs, where it is assumed that misreporting could…
Descriptors: Control Groups, Experimental Groups, Educational Research, Data Analysis