Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 18 |
Descriptor
Classification | 19 |
Computation | 19 |
Models | 8 |
Bayesian Statistics | 5 |
Probability | 5 |
Regression (Statistics) | 4 |
Scores | 4 |
Statistical Analysis | 4 |
Statistical Inference | 4 |
Achievement Tests | 3 |
Data Analysis | 3 |
More ▼ |
Source
Journal of Educational and… | 19 |
Author
Kim, Jee-Seon | 2 |
Reardon, Sean F. | 2 |
Sinharay, Sandip | 2 |
Suk, Youmi | 2 |
Chan, Wendy | 1 |
Chen, Yinghan | 1 |
Chiang, Hanley S. | 1 |
Culpepper, Steven Andrew | 1 |
Dalal, Siddhartha R. | 1 |
De Boeck, Paul | 1 |
Douglas, Karen M. | 1 |
More ▼ |
Publication Type
Journal Articles | 19 |
Reports - Research | 14 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Education Level
Elementary Secondary Education | 3 |
Elementary Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Grade 8 | 1 |
High Schools | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Postsecondary Education | 1 |
Audience
Location
South Korea | 2 |
Australia | 1 |
Austria | 1 |
Belgium | 1 |
Canada | 1 |
Cyprus | 1 |
Czech Republic | 1 |
Denmark | 1 |
Estonia | 1 |
Finland | 1 |
France | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Trends in International… | 2 |
National Assessment of… | 1 |
What Works Clearinghouse Rating
Cross-Classified Item Response Theory Modeling with an Application to Student Evaluation of Teaching
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (AP®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models
Johnson, Matthew S.; Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2020
One common score reported from diagnostic classification assessments is the vector of posterior means of the skill mastery indicators. As with any assessment, it is important to derive and report estimates of the reliability of the reported scores. After reviewing a reliability measure suggested by Templin and Bradshaw, this article suggests three…
Descriptors: Reliability, Probability, Skill Development, Classification
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Culpepper, Steven Andrew; Chen, Yinghan – Journal of Educational and Behavioral Statistics, 2019
Exploratory cognitive diagnosis models (CDMs) estimate the Q matrix, which is a binary matrix that indicates the attributes needed for affirmative responses to each item. Estimation of Q is an important next step for improving classifications and broadening application of CDMs. Prior research primarily focused on an exploratory version of the…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Minchen, Nathan D.; de la Torre, Jimmy; Liu, Ying – Journal of Educational and Behavioral Statistics, 2017
Nondichotomous response models have been of greater interest in recent years due to the increasing use of different scoring methods and various performance measures. As an important alternative to dichotomous scoring, the use of continuous response formats has been found in the literature. To assess finer-grained skills or attributes and to…
Descriptors: Models, Psychometrics, Test Theory, Maximum Likelihood Statistics
Suk, Youmi; Kim, Jee-Seon; Kang, Hyunseung – Journal of Educational and Behavioral Statistics, 2021
There has been increasing interest in exploring heterogeneous treatment effects using machine learning (ML) methods such as causal forests, Bayesian additive regression trees, and targeted maximum likelihood estimation. However, there is little work on applying these methods to estimate treatment effects in latent classes defined by…
Descriptors: Artificial Intelligence, Statistical Analysis, Statistical Inference, Classification
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Pokropek, Artur – Journal of Educational and Behavioral Statistics, 2016
A response model that is able to detect guessing behaviors and produce unbiased estimates in low-stake conditions using timing information is proposed. The model is a special case of the grade of membership model in which responses are modeled as partial members of a class that is affected by motivation and a class that responds only according to…
Descriptors: Reaction Time, Models, Guessing (Tests), Computation
Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith – Journal of Educational and Behavioral Statistics, 2013
Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…
Descriptors: Classification, Models, Nonparametric Statistics, Bayesian Statistics
Ho, Andrew D.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2012
Test scores are commonly reported in a small number of ordered categories. Examples of such reporting include state accountability testing, Advanced Placement tests, and English proficiency tests. This article introduces and evaluates methods for estimating achievement gaps on a familiar standard-deviation-unit metric using data from these ordered…
Descriptors: Achievement Gap, Scores, Computation, Classification
Tipton, Elizabeth – Journal of Educational and Behavioral Statistics, 2013
As a result of the use of random assignment to treatment, randomized experiments typically have high internal validity. However, units are very rarely randomly selected from a well-defined population of interest into an experiment; this results in low external validity. Under nonrandom sampling, this means that the estimate of the sample average…
Descriptors: Generalization, Experiments, Classification, Computation
Previous Page | Next Page »
Pages: 1 | 2