NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational and…48
Publication Type
Journal Articles48
Reports - Descriptive48
Reports - Research1
Audience
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 48 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Doran, Harold – Journal of Educational and Behavioral Statistics, 2023
This article is concerned with a subset of numerically stable and scalable algorithms useful to support computationally complex psychometric models in the era of machine learning and massive data. The subset selected here is a core set of numerical methods that should be familiar to computational psychometricians and considers whitening transforms…
Descriptors: Scaling, Algorithms, Psychometrics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Educational and Behavioral Statistics, 2022
The presence of clustered data is common in the sociobehavioral sciences. One approach that specifically deals with clustered data but has seen little use in education is the generalized estimating equations (GEEs) approach. We provide a background on GEEs, discuss why it is appropriate for the analysis of clustered data, and provide worked…
Descriptors: Multivariate Analysis, Computation, Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Waller, Niels G. – Journal of Educational and Behavioral Statistics, 2023
Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of…
Descriptors: Statistics Education, Multivariate Analysis, Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro; Okada, Kensuke – Journal of Educational and Behavioral Statistics, 2020
In this article, we propose a variational Bayes (VB) inference method for the deterministic input noisy AND gate model of cognitive diagnostic assessment. The proposed method, which applies the iterative algorithm for optimization, is derived based on the optimal variational posteriors of the model parameters. The proposed VB inference enables…
Descriptors: Bayesian Statistics, Statistical Inference, Cognitive Measurement, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Jinnie – Journal of Educational and Behavioral Statistics, 2017
This article reviews PROC IRT, which was added to Statistical Analysis Software in 2014. We provide an introductory overview of a free version of SAS, describe what PROC IRT offers for item response theory (IRT) analysis and how one can use PROC IRT, and discuss how other SAS macros and procedures may compensate the IRT functionalities of PROC IRT.
Descriptors: Item Response Theory, Computer Software, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Minchen, Nathan D.; de la Torre, Jimmy; Liu, Ying – Journal of Educational and Behavioral Statistics, 2017
Nondichotomous response models have been of greater interest in recent years due to the increasing use of different scoring methods and various performance measures. As an important alternative to dichotomous scoring, the use of continuous response formats has been found in the literature. To assess finer-grained skills or attributes and to…
Descriptors: Models, Psychometrics, Test Theory, Maximum Likelihood Statistics
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Oranje, Andreas; Kolstad, Andrew – Journal of Educational and Behavioral Statistics, 2019
The design and psychometric methodology of the National Assessment of Educational Progress (NAEP) is constantly evolving to meet the changing interests and demands stemming from a rapidly shifting educational landscape. NAEP has been built on strong research foundations that include conducting extensive evaluations and comparisons before new…
Descriptors: National Competency Tests, Psychometrics, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
Sweet, Tracy M. – Journal of Educational and Behavioral Statistics, 2015
Social networks in education commonly involve some form of grouping, such as friendship cliques or teacher departments, and blockmodels are a type of statistical social network model that accommodate these grouping or blocks by assuming different within-group tie probabilities than between-group tie probabilities. We describe a class of models,…
Descriptors: Social Networks, Statistical Analysis, Probability, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Thissen, David – Journal of Educational and Behavioral Statistics, 2016
David Thissen, a professor in the Department of Psychology and Neuroscience, Quantitative Program at the University of North Carolina, has consulted and served on technical advisory committees for assessment programs that use item response theory (IRT) over the past couple decades. He has come to the conclusion that there are usually two purposes…
Descriptors: Item Response Theory, Test Construction, Testing Problems, Student Evaluation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4