Publication Date
In 2025 | 3 |
Since 2024 | 6 |
Descriptor
Computation | 6 |
Models | 3 |
Statistical Analysis | 3 |
Algorithms | 2 |
Bayesian Statistics | 2 |
Item Response Theory | 2 |
Sample Size | 2 |
Accuracy | 1 |
Artificial Intelligence | 1 |
Benchmarking | 1 |
Causal Models | 1 |
More ▼ |
Source
Journal of Educational and… | 6 |
Author
Daniel McNeish | 1 |
David Arthur | 1 |
Elizabeth Tipton | 1 |
Hua-Hua Chang | 1 |
Justin L. Kern | 1 |
Kaitlyn G. Fitzgerald | 1 |
Li Cai | 1 |
Peter Z. Schochet | 1 |
Roy Levy | 1 |
Sijia Huang | 1 |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Journal of Educational and Behavioral Statistics, 2025
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Cross-Classified Item Response Theory Modeling with an Application to Student Evaluation of Teaching
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory