NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Jin; Perera, Robert A.; Kang, Le; Sabo, Roy T.; Kirkpatrick, Robert M. – Journal of Educational and Behavioral Statistics, 2022
This study proposes transformation functions and matrices between coefficients in the original and reparameterized parameter spaces for an existing linear-linear piecewise model to derive the interpretable coefficients directly related to the underlying change pattern. Additionally, the study extends the existing model to allow individual…
Descriptors: Longitudinal Studies, Statistical Analysis, Matrices, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Yu, Albert; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2023
We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model's…
Descriptors: Item Response Theory, Learning, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zhan, Peida; Jiao, Hong; Liao, Dandan; Li, Feiming – Journal of Educational and Behavioral Statistics, 2019
Providing diagnostic feedback about growth is crucial to formative decisions such as targeted remedial instructions or interventions. This article proposed a longitudinal higher-order diagnostic classification modeling approach for measuring growth. The new modeling approach is able to provide quantitative values of overall and individual growth…
Descriptors: Classification, Growth Models, Educational Diagnosis, Models
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis