Descriptor
Source
| Journal of Educational… | 4 |
Publication Type
| Journal Articles | 4 |
| Reports - Evaluative | 2 |
| Reports - Research | 2 |
| Computer Programs | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedHarwell, Michael R.; And Others – Journal of Educational Statistics, 1988
The Bock and Aitkin Marginal Maximum Likelihood/EM (MML/EM) approach to item parameter estimation is an alternative to the classical joint maximum likelihood procedure of item response theory. This paper provides the essential mathematical details of a MML/EM solution and shows its use in obtaining consistent item parameter estimates. (TJH)
Descriptors: Algorithms, Computer Software, Equations (Mathematics), Estimation (Mathematics)
Peer reviewedde Leeuw, Jan; Verhelst, Norman – Journal of Educational Statistics, 1986
Maximum likelihood procedures are presented for a general model to unify the various models and techniques that have been proposed for item analysis. Unconditional maximum likelihood estimation, proposed by Wright and Haberman, and conditional maximum likelihood estimation, proposed by Rasch and Andersen, are shown as important special cases. (JAZ)
Descriptors: Algorithms, Estimation (Mathematics), Item Analysis, Latent Trait Theory
Peer reviewedAlbert, James H. – Journal of Educational Statistics, 1992
Estimating item parameters from a two-parameter normal ogive model is considered using Gibbs sampling to simulate draws from the joint posterior distribution of ability and item parameters. The method gives marginal posterior density estimates for any parameter of interest, as illustrated using data from a 33-item mathematics placement…
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)
Peer reviewedRaudenbush, Stephen W.; And Others – Journal of Educational Statistics, 1991
A three-level multivariate statistical modeling strategy is presented that resolves the question of whether the unit of analysis should be the teacher or the student. A reanalysis of U.S. high school data (51 Catholic and 59 public schools from the High School and Beyond survey) illustrates the model. (SLD)
Descriptors: Algorithms, Catholic Schools, Educational Environment, Equations (Mathematics)


