NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Young, Nicholas T.; Caballero, Marcos D. – Journal of Educational Data Mining, 2021
We encounter variables with little variation often in educational data mining (EDM) due to the demographics of higher education and the questions we ask. Yet, little work has examined how to analyze such data. Therefore, we conducted a simulation study using logistic regression, penalized regression, and random forest. We systematically varied the…
Descriptors: Prediction, Models, Learning Analytics, Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests