NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Seiyon M. Lee; Sami Baral; Hongming Chip Li; Li Cheng; Shan Zhang; Carly S. Thorp; Jennifer St. John; Tamisha Thompson; Neil Heffernan; Anthony F. Botelho – Journal of Educational Data Mining, 2025
Teachers often use open-ended questions to promote students' deeper understanding of the content. These questions are particularly useful in K-12 mathematics education, as they provide richer insights into students' problem-solving processes compared to closed-ended questions. However, they are also challenging to implement in educational…
Descriptors: Feedback (Response), Taxonomy, Data Analysis, Middle School Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Spoon, Kelly; Beemer, Joshua; Whitmer, John C.; Fan, Juanjuan; Frazee, James P.; Stronach, Jeanne; Bohonak, Andrew J.; Levine, Richard A. – Journal of Educational Data Mining, 2016
Random forests are presented as an analytics foundation for educational data mining tasks. The focus is on course- and program-level analytics including evaluating pedagogical approaches and interventions and identifying and characterizing at-risk students. As part of this development, the concept of individualized treatment effects (ITE) is…
Descriptors: Data Analysis, Individualized Instruction, Teaching Methods, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Koedinger, Kenneth R. – Journal of Educational Data Mining, 2017
As the use of educational technology becomes more ubiquitous, an enormous amount of learning process data is being produced. Educational data mining seeks to analyze and model these data, with the ultimate goal of improving learning outcomes. The most firmly grounded and rigorous evaluation of an educational data mining discovery is whether it…
Descriptors: Educational Technology, Technology Uses in Education, Data Collection, Data Analysis