Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 3 |
Descriptor
Source
| Journal of Computer Assisted… | 3 |
Author
| Arthanari, Tiru S. | 1 |
| Carolin Hahnel | 1 |
| Cordula Artelt | 1 |
| Daniel Bengs | 1 |
| Daniel Biedermann | 1 |
| Esnaashari, Shadi | 1 |
| Frank Goldhammer | 1 |
| Gardner, Lesley A. | 1 |
| Hendrik Drachsler | 1 |
| Holger Horz | 1 |
| Ilka Wolter | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 3 |
Education Level
| Higher Education | 2 |
| Postsecondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 1 |
What Works Clearinghouse Rating
Wannapon Suraworachet; Qi Zhou; Mutlu Cukurova – Journal of Computer Assisted Learning, 2025
Background: Many researchers work on the design and development of multimodal collaboration support systems with AI, yet very few of these systems are mature enough to provide actionable feedback to students in real-world settings. Therefore, a notable gap exists in the literature regarding students' perceptions of such systems and the feedback…
Descriptors: Graduate Students, Student Attitudes, Artificial Intelligence, Cooperative Learning
Tornike Giorgashvili; Ioana Jivet; Cordula Artelt; Daniel Biedermann; Daniel Bengs; Frank Goldhammer; Carolin Hahnel; Julia Mendzheritskaya; Julia Mordel; Monica Onofrei; Marc Winter; Ilka Wolter; Holger Horz; Hendrik Drachsler – Journal of Computer Assisted Learning, 2025
Background: Learning analytics dashboards (LAD) have been developed as feedback tools to help students self-regulate their learning (SRL) by using the large amounts of data generated by online learning platforms. Despite extensive research on LAD design, there remains a gap in understanding how learners make sense of information visualised on LADs…
Descriptors: Field Studies, Student Reaction, Feedback (Response), Learning Analytics
Esnaashari, Shadi; Gardner, Lesley A.; Arthanari, Tiru S.; Rehm, Michael – Journal of Computer Assisted Learning, 2023
Background: It is vital to understand students' Self-Regulatory Learning (SRL) processes, especially in Blended Learning (BL), when students need to be more autonomous in their learning process. In studying SRL, most researchers have followed a variable-oriented approach. Moreover, little has been known about the unfolding process of students' SRL…
Descriptors: Metacognition, Student Attitudes, Learning Strategies, Questionnaires

Peer reviewed
Direct link
