Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 13 |
Descriptor
Computation | 14 |
Concept Formation | 14 |
Scientific Concepts | 13 |
Science Instruction | 12 |
Chemistry | 11 |
College Science | 10 |
Teaching Methods | 4 |
Organic Chemistry | 3 |
Science Laboratories | 3 |
Spectroscopy | 3 |
Undergraduate Study | 3 |
More ▼ |
Source
Journal of Chemical Education | 14 |
Author
Andreas Haraldsrud | 1 |
Antonio Reina | 1 |
Apps, Michael G. | 1 |
Autschbach, Jochen | 1 |
Avery, Patrick | 1 |
A´ngela Molina | 1 |
Bunce, Diane M. | 1 |
Carmel, Justin H. | 1 |
Cooper, Melanie M. | 1 |
Dillner, Debra K. | 1 |
Dong, Li-Kun | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Descriptive | 7 |
Reports - Research | 6 |
Guides - Classroom - Teacher | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 7 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Mexico | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Nanette M. Wachter; Evan H. Kreth; Ronald P. D'Amelia – Journal of Chemical Education, 2024
Keto-enol tautomerization is paramount to understanding the mechanisms involved in many organic reactions and biochemical transformations. Isomerization of an enol to a carbonyl compound is typically introduced during the discussion of the acid-catalyzed electrophilic addition of water to alkynes. The tautomerization of carbonyl compounds to enol…
Descriptors: Science Instruction, Chemistry, Scientific Concepts, Concept Formation
Joaqui´n Gonza´lez; Eduardo Laborda; A´ngela Molina – Journal of Chemical Education, 2023
Theoretical and practical foundations of basic electrochemical concepts of heterogeneous charge transfer reactions that underline electrochemical processes are presented for their detailed study by undergraduate and postgraduate students. Several simple methods for calculating key variables, such as the half-wave potential, limiting current, and…
Descriptors: Chemistry, College Science, Science Instruction, Computer Simulation
Dongju Zhang – Journal of Chemical Education, 2023
This review describes a computational chemistry exercise aimed at enhancing the understanding of upper-division undergraduates in organic chemistry and physical chemistry regarding the structures and aromaticities of cyclobutadiene and cyclooctatetraene. This exercise exposes students to chemical problems that require computational methods as a…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Organic Chemistry
Andreas Haraldsrud; Tor Ole B. Odden – Journal of Chemical Education, 2023
When learning chemistry, students must learn to extract chemical information from mathematical expressions. However, chemistry students' exposure to mathematics often comes primarily from pure mathematics courses, which can lead to knowledge fragmentation and potentially hinder their ability to use mathematics in chemistry. This study examines how…
Descriptors: Chemistry, Mathematics, Computation, Cognitive Processes
Miguel Reina; Itzel Guerrero-Ri´os; Antonio Reina – Journal of Chemical Education, 2022
We describe a remote pedagogical approach based on chemical thinking to study metal-carbonyl complexes by analyzing simulated IR spectra. The proposed approach, implemented due to the COVID-19 pandemic, can be employed in classrooms that have very limited laboratory equipment for evaluating toxic metal-carbonyl compounds, as well as for…
Descriptors: Chemistry, Distance Education, Scientific Concepts, Concept Formation
Dong, Li-Kun; Li, Zi-Hao; Zhang, Shu-Yu – Journal of Chemical Education, 2021
Student-centered teaching has become increasingly common in higher education as researchers have demonstrated its efficacy in recent decades. Herein, we hope to establish an efficient problem-based learning (PBL) method, which can help upper-division students learn organic chemistry content by combining teaching materials, experimental literature,…
Descriptors: Student Centered Learning, Science Instruction, College Science, Problem Based Learning
Halpern, Arthur M.; Marzzacco, Charles J. – Journal of Chemical Education, 2018
A spreadsheet-based project is presented that is designed to enhance and expand student understanding of phase transition properties of pure water and ideal and nonideal (electrolyte) aqueous solutions. Using fundamental principles of classical and statistical thermodynamics, students calculate the melting and boiling points, the enthalpies and…
Descriptors: Chemistry, Thermodynamics, Science Instruction, Spreadsheets
Underwood, Sonia M.; Posey, Lynmarie A.; Herrington, Deborah G.; Carmel, Justin H.; Cooper, Melanie M. – Journal of Chemical Education, 2018
As chemists, we understand that science is more than a set of disconnected facts. It is a way of investigating and understanding our natural world that involves things like asking questions, analyzing data, identifying patterns, constructing explanations, developing and using models, and applying core concepts to other situations. This paper uses…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Study
Avery, Patrick; Ludoweig, Herbert; Autschbach, Jochen; Zurek, Eva – Journal of Chemical Education, 2018
The "Yet Another extended Hu¨ckel Molecular Orbital Package" (YAeHMOP) has been merged with the Avogadro open-source molecular editor and visualizer. It is now possible to perform YAeHMOP calculations directly from the Avogadro graphical user interface for materials that are periodic in one, two, or three dimensions, and to visualize…
Descriptors: Science Instruction, College Science, Chemistry, Computer Assisted Instruction
Teichert, Melonie A.; Schroeder, Maria J.; Lin, Shirley; Dillner, Debra K.; Komperda, Regis; Bunce, Diane M. – Journal of Chemical Education, 2020
On the basis of the results of two prior studies at the US Naval Academy (USNA), which described the choice of study resources and the self-reported learning approaches of students of differing achievement levels, the current investigation examines how students of differing achievement levels in general chemistry actually solve multiple-choice…
Descriptors: Problem Solving, Chemistry, Science Instruction, Science Tests
Wheate, Nial J.; Apps, Michael G.; Khalifa, Hazer; Doughty, Alan; Patel, Alpesh Ramanlal – Journal of Chemical Education, 2017
A laboratory experiment to determine the concentration of the anti-inflammatory drug ibuprofen in liquid gelatin capsule dosage forms, suitable for undergraduate chemistry or pharmacy students, is described. Either individually, or in small teams, the students digest two 200 mg capsules in a KOH solution. While the capsules are digesting the…
Descriptors: Science Instruction, Science Laboratories, Laboratory Experiments, Science Experiments
Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J. – Journal of Chemical Education, 2015
An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…
Descriptors: Science Instruction, Spectroscopy, Organic Chemistry, Science Laboratories
Prilliman, Stephen G. – Journal of Chemical Education, 2014
The College Board's recently revised curriculum for advanced placement (AP) chemistry places a strong emphasis on conceptual understanding, including representations of particle phenomena. This change in emphasis is informed by years of research showing that students could perform algorithmic calculations but not explain those calculations…
Descriptors: Science Instruction, Secondary School Science, High Schools, College Science

Gilbert, George L. – Journal of Chemical Education, 1998
Demonstrates the logical relationship between percentage composition and an empirical formula using a technique that depends on determining a minimum molar mass for the compound based on the mass percent of each element. (DDR)
Descriptors: Chemistry, Computation, Concept Formation, Higher Education