NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Derek J. Bischoff; Michael E. Mackay; Sheldon A. Hewlett – Journal of Chemical Education, 2024
Upper-division undergraduate students are introduced to polymer processing using material extrusion fused filament fabrication 3D printing to make poly(lactic acid) (PLA) mechanical testing specimens. Computer aided design and slicing software packages are used to demonstrate the process of preparing 3D computer models for printing. Following the…
Descriptors: Plastics, Mathematical Models, Printing, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Gunderson, Julie E. C.; Mitchell, Dylan W.; Bullis, Ryan G.; Steward, John Q.; Gunderson, William A. – Journal of Chemical Education, 2020
Fused filament fabrication 3D printing is a process by which three-dimensional objects are created by depositing layers of a material onto a hard, flat surface by a robot. It is often referred to as an "additive manufacturing" technique because material is added in successive layers to create an object. Because many scientific…
Descriptors: Chemistry, Science Instruction, Computer Software, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Oliver A. H.; Spencer, Michelle J. S. – Journal of Chemical Education, 2018
Using tangible models to help students visualize chemical structures in three dimensions has been a mainstay of chemistry education for many years. Conventional chemistry modeling kits are, however, limited in the types and accuracy of the molecules, bonds and structures they can be used to build. The recent development of 3D printing technology…
Descriptors: Computer Peripherals, Printing, Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Paukstelis, Paul J. – Journal of Chemical Education, 2018
The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…
Descriptors: Chemistry, Science Instruction, Molecular Structure, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Pinger, Cody W.; Castiaux, Andre; Speed, Savannah; Spence, Dana M. – Journal of Chemical Education, 2018
Plasma protein binding measurements are an important aspect of pharmacology and drug development. Therefore, performing these measurements can provide a valuable and highly practical learning experience for students across many scientific disciplines. Here, we describe the design and characterization of a 3D-printed device capable of performing…
Descriptors: Chemistry, Science Instruction, Computer Peripherals, Pharmacology
Peer reviewed Peer reviewed
Direct linkDirect link
de Cataldo, Riccardo; Griffith, Kaitlyn M.; Fogarty, Keir H. – Journal of Chemical Education, 2018
Introductory chemistry students encounter the concept of hybrid orbitals as a transition from atomic orbitals to molecular bonding. The principal purpose of learning hybridization in the undergraduate curriculum is to impart an understanding of the origins of molecular bonding and geometry. Physical models of both individual hybrid orbitals and…
Descriptors: Introductory Courses, Science Instruction, Visualization, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Lohning, Anna E.; Hall, Susan; Dukie, Shailandra – Journal of Chemical Education, 2019
Students often approach biochemistry with a degree of trepidation with many considering it one of the more difficult subjects. This is, in part, due to the necessity of making visual images of submicroscopic concepts. Molecular interactions underpin most biological processes; therefore, mastering these concepts is essential. Understanding the…
Descriptors: Undergraduate Students, College Science, Biochemistry, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Kovarik, Michelle L.; Clapis, Julia R.; Romano-Pringle, K. Ana – Journal of Chemical Education, 2020
One challenge of teaching chemical analysis is the proliferation of sophisticated, but often impenetrable, instrumentation in the modern laboratory. Complex instruments, and the software that runs them, distance students from the physical and chemical processes that generate the analytical signal. A solution to this challenge is the introduction…
Descriptors: Spectroscopy, Science Instruction, Teaching Methods, Science Laboratories
Peer reviewed Peer reviewed
Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F. – Journal of Chemical Education, 2004
The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.
Descriptors: Computer Software, Computer Peripherals, Color, Chemistry