NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hanke Vermeiren; Abe D. Hofman; Maria Bolsinova – International Educational Data Mining Society, 2025
The traditional Elo rating system (ERS), widely used as a student model in adaptive learning systems, assumes unidimensionality (i.e., all items measure a single ability or skill), limiting its ability to handle multidimensional data common in educational contexts. In response, several multidimensional extensions of the Elo rating system have been…
Descriptors: Item Response Theory, Models, Comparative Analysis, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Conrad Borchers – International Educational Data Mining Society, 2025
Algorithmic bias is a pressing concern in educational data mining (EDM), as it risks amplifying inequities in learning outcomes. The Area Between ROC Curves (ABROCA) metric is frequently used to measure discrepancies in model performance across demographic groups to quantify overall model fairness. However, its skewed distribution--especially when…
Descriptors: Algorithms, Bias, Statistics, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yanping Pei; Adam C. Sales; Hyeon-Ah Kang; Tiffany A. Whittaker – International Educational Data Mining Society, 2025
Fully-Latent Principal Stratification (FLPS) offers a promising approach for estimating treatment effect heterogeneity based on patterns of students' interactions with Intelligent Tutoring Systems (ITSs). However, FLPS relies on correctly specified models. In addition, multiple latent variables, such as ability, participation, and epistemic…
Descriptors: Intelligent Tutoring Systems, Measurement, Computation, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
MacLellan, Christopher J.; Harpstead, Erik; Patel, Rony; Koedinger, Kenneth R. – International Educational Data Mining Society, 2016
While Educational Data Mining research has traditionally emphasized the practical aspects of learner modeling, such as predictive modeling, estimating students knowledge, and informing adaptive instruction, in the current study, we argue that Educational Data Mining can also be used to test and improve our fundamental theories of human learning.…
Descriptors: Educational Research, Data Collection, Learning Theories, Recall (Psychology)
Klingler, Severin; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2015
Modeling student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for modeling the acquisition of knowledge is Bayesian Knowledge Tracing (BKT). Various extensions to the original BKT model have been proposed, among them two novel models that unify BKT and Item Response Theory (IRT). Latent Factor Knowledge…
Descriptors: Intelligent Tutoring Systems, Knowledge Level, Item Response Theory, Prediction
Beheshti, Behzad; Desmarais, Michel C.; Naceur, Rhouma – International Educational Data Mining Society, 2012
Identifying the skills that determine the success or failure to exercises and question items is a difficult task. Multiple skills may be involved at various degree of importance, and skills may overlap and correlate. In an effort towards the goal of finding the skills behind a set of items, we investigate two techniques to determine the number of…
Descriptors: Prediction, Evaluation, Algebra, Mathematics
González-Brenes, José P.; Huang, Yun – International Educational Data Mining Society, 2015
Classification evaluation metrics are often used to evaluate adaptive tutoring systems-- programs that teach and adapt to humans. Unfortunately, it is not clear how intuitive these metrics are for practitioners with little machine learning background. Moreover, our experiments suggest that existing convention for evaluating tutoring systems may…
Descriptors: Intelligent Tutoring Systems, Evaluation Methods, Program Evaluation, Student Behavior
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction