Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Algorithms | 2 |
| Models | 2 |
| Reliability | 2 |
| Artificial Intelligence | 1 |
| Bias | 1 |
| Cheating | 1 |
| Deception | 1 |
| Effect Size | 1 |
| Evaluation | 1 |
| Intelligent Tutoring Systems | 1 |
| Prediction | 1 |
| More ▼ | |
Source
| International Educational… | 2 |
Publication Type
| Reports - Research | 2 |
| Speeches/Meeting Papers | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Conrad Borchers – International Educational Data Mining Society, 2025
Algorithmic bias is a pressing concern in educational data mining (EDM), as it risks amplifying inequities in learning outcomes. The Area Between ROC Curves (ABROCA) metric is frequently used to measure discrepancies in model performance across demographic groups to quantify overall model fairness. However, its skewed distribution--especially when…
Descriptors: Algorithms, Bias, Statistics, Simulation
Levin, Nathan; Baker, Ryan S.; Nasiar, Nidhi; Fancsali, Stephen; Hutt, Stephen – International Educational Data Mining Society, 2022
Research into "gaming the system" behavior in intelligent tutoring systems (ITS) has been around for almost two decades, and detection has been developed for many ITSs. Machine learning models can detect this behavior in both real-time and in historical data. However, intelligent tutoring system designs often change over time, in terms…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Cheating

Peer reviewed
