Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 7 |
| Since 2007 (last 20 years) | 10 |
Descriptor
Source
| International Educational… | 10 |
Author
| Aswani Yaramala | 1 |
| Bouchet, Francois, Ed. | 1 |
| Bulathwela, Sahan | 1 |
| Clavié, Benjamin | 1 |
| Cleuziou, Guillaume | 1 |
| Essa, Alfred | 1 |
| Flouvat, Frédéric | 1 |
| Gal, Kobi | 1 |
| Goedicke, Michael | 1 |
| Hamid Karimi | 1 |
| Hanck, Christoph | 1 |
| More ▼ | |
Publication Type
| Speeches/Meeting Papers | 8 |
| Reports - Research | 5 |
| Reports - Descriptive | 3 |
| Collected Works - Proceedings | 2 |
Education Level
| Higher Education | 5 |
| Postsecondary Education | 5 |
| Elementary Secondary Education | 2 |
| Elementary Education | 1 |
| Grade 6 | 1 |
| Intermediate Grades | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
| Finland | 1 |
| France | 1 |
| Germany | 1 |
| Tennessee (Memphis) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Cleuziou, Guillaume; Flouvat, Frédéric – International Educational Data Mining Society, 2021
Improving the pedagogical effectiveness of programming training platforms is a hot topic that requires the construction of fine and exploitable representations of learners' programs. This article presents a new approach for learning program embeddings. Starting from the hypothesis that the function of a program, but also its "style", can…
Descriptors: Programming, Computer Science Education, Electronic Learning, Data Analysis
Aswani Yaramala; Soheila Farokhi; Hamid Karimi – International Educational Data Mining Society, 2024
This paper presents an in-depth analysis of student behavior and score prediction in the ASSISTments online learning platform. We address four research questions related to the impact of tutoring materials, skill mastery, feature extraction, and graph representation learning. To investigate the impact of tutoring materials, we analyze the…
Descriptors: Student Behavior, Scores, Prediction, Electronic Learning
Bulathwela, Sahan; Verma, Meghana; Pérez-Ortiz, María; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2022
This work explores how population-based engagement prediction can address cold-start at scale in large learning resource collections. The paper introduces: (1) VLE, a novel dataset that consists of content and video based features extracted from publicly available scientific video lectures coupled with implicit and explicit signals related to…
Descriptors: Video Technology, Lecture Method, Data Analysis, Prediction
Langerbein, Janine; Massing, Till; Klenke, Jens; Striewe, Michael; Goedicke, Michael; Hanck, Christoph – International Educational Data Mining Society, 2023
Due to the precautionary measures during the COVID-19 pandemic many universities offered unproctored take-home exams. We propose methods to detect potential collusion between students and apply our approach on event log data from take-home exams during the pandemic. We find groups of students with suspiciously similar exams. In addition, we…
Descriptors: Information Retrieval, Pattern Recognition, Data Analysis, Information Technology
Johnson, Jillian C.; Olney, Andrew M. – International Educational Data Mining Society, 2022
Typical data science instruction uses generic datasets like survival rates on the Titanic, which may not be motivating for students. Will introducing real-life data science problems fill this motivational deficit? To analyze this question, we contrasted learning with generic datasets and artificial problems (Phase 1) with a community-sourced…
Descriptors: Data, Data Analysis, Interdisciplinary Approach, Student Motivation
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Hsiao, I-Han, Ed.; Sahebi, Shaghayegh, Ed.; Bouchet, Francois, Ed.; Vie, Jill-Jenn, Ed. – International Educational Data Mining Society, 2021
For this 14th iteration of the International Conference on Educational Data Mining (EDM 2021), the conference was held completely online. EDM is organized under the auspices of the International Educational Data Mining Society and was meant to happen in Paris, France. The official theme of this year's conference was Shifting Landscape of…
Descriptors: Blended Learning, Distance Education, Learning Analytics, Educational Technology
Popescu, Paul Stefan – International Educational Data Mining Society, 2015
In this digital era, learning from data gathered from different software systems may have a great impact on the quality of the interaction experience. There are two main directions that come to enhance this emerging research domain, Intelligent Data Analysis (IDA) and Human Computer Interaction (HCI). HCI specific research methodologies can be…
Descriptors: Data Analysis, Electronic Learning, Interaction, Design
Lewkow, Nicholas; Zimmerman, Neil; Riedesel, Mark; Essa, Alfred – International Educational Data Mining Society, 2015
Next generation digital learning environments require delivering "just-in-time feedback" to learners and those who support them. Unlike traditional business intelligence environments, streaming data requires resilient infrastructure that can move data at scale from heterogeneous data sources, process the data quickly for use across…
Descriptors: Electronic Learning, Data Analysis, Higher Education, Elementary Secondary Education
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection

Peer reviewed
