NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aswani Yaramala; Soheila Farokhi; Hamid Karimi – International Educational Data Mining Society, 2024
This paper presents an in-depth analysis of student behavior and score prediction in the ASSISTments online learning platform. We address four research questions related to the impact of tutoring materials, skill mastery, feature extraction, and graph representation learning. To investigate the impact of tutoring materials, we analyze the…
Descriptors: Student Behavior, Scores, Prediction, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
David Joyner, Editor; Benjamin Paaßen, Editor; Carrie Demmans Epp, Editor – International Educational Data Mining Society, 2024
The Georgia Institute of Technology is proud to host the seventeenth International Conference on Educational Data Mining (EDM) in Atlanta, Georgia, July 14-July 17, 2024. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New tools, new prospects, new risks--educational data…
Descriptors: Data Analysis, Pattern Recognition, Technology Uses in Education, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chenguang Pan; Zhou Zhang – International Educational Data Mining Society, 2024
There is less attention on examining algorithmic fairness in secondary education dropout predictions. Also, the inclusion of protected attributes in machine learning models remains a subject of debate. This study delves into the use of machine learning models for predicting high school dropouts, focusing on the role of protected attributes like…
Descriptors: High School Students, Dropouts, Dropout Characteristics, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Langerbein, Janine; Massing, Till; Klenke, Jens; Striewe, Michael; Goedicke, Michael; Hanck, Christoph – International Educational Data Mining Society, 2023
Due to the precautionary measures during the COVID-19 pandemic many universities offered unproctored take-home exams. We propose methods to detect potential collusion between students and apply our approach on event log data from take-home exams during the pandemic. We find groups of students with suspiciously similar exams. In addition, we…
Descriptors: Information Retrieval, Pattern Recognition, Data Analysis, Information Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chung, Cheng-Yu; Hsiao, I-Han – International Educational Data Mining Society, 2021
The distributed practice effect suggests that students retain learning content better when they pace their practice over time. The key factors are practice dosage (intensity) and timing (when to practice and how in between). Inspired by the thriving development of image recognition, this study adopts one of the successful techniques,…
Descriptors: Models, Drills (Practice), Pacing, Computer Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karimov, Ayaz; Saarela, Mirka; Kärkkäinen, Tommi – International Educational Data Mining Society, 2023
Within the last decade, different educational data mining techniques, particularly quantitative methods such as clustering, and regression analysis are widely used to analyze the data from educational games. In this research, we implemented a quantitative data mining technique (clustering) to further investigate students' feedback. Students played…
Descriptors: Student Attitudes, Feedback (Response), Educational Games, Information Retrieval
International Educational Data Mining Society, 2012
The 5th International Conference on Educational Data Mining (EDM 2012) is held in picturesque Chania on the beautiful Crete island in Greece, under the auspices of the International Educational Data Mining Society (IEDMS). The EDM 2012 conference is a leading international forum for high quality research that mines large data sets of educational…
Descriptors: Information Retrieval, Data, Data Analysis, Pattern Recognition