NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…8
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ryan S. Baker; Stephen Hutt; Christopher A. Brooks; Namrata Srivastava; Caitlin Mills – International Educational Data Mining Society, 2024
Open science has become an important part of contemporary science, and some open science practices (such as data sharing) have been prominent aspects of Educational Data Mining (EDM) since the start of the field. There have been recent pushes for EDM to more fully embrace the range of open science practices that are seen in other fields. In this…
Descriptors: Information Retrieval, Data Analysis, Information Technology, Psychology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ayaz Karimov; Mirka Saarela; Tommi Kärkkäinen; Sabina Aghayeva – International Educational Data Mining Society, 2024
Data analytics is widely accepted as a crucial aspect of effective school leadership, yet its utilization by principals has not been thoroughly examined in scholarly works. The potential of Educational Data Mining Tools (EDM) to provide a "big picture" for principals to address equity gaps among students is overlooked in the literature.…
Descriptors: Foreign Countries, Data Analysis, Data Use, Principals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiang, Weijie; Pardos, Zachary A. – International Educational Data Mining Society, 2020
Data mining of course enrollment and course description records has soared as institutions of higher education begin tapping into the value of these data for academic and internal research purposes. This has led to a more than doubling of papers on course prediction tasks every year. The papers often center around a single prediction task and…
Descriptors: Course Descriptions, Models, Prediction, Course Selection (Students)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hunt-Isaak, Noah; Cherniavsky, Peter; Snyder, Mark; Rangwala, Huzefa – International Educational Data Mining Society, 2020
National failure rates seen in undergraduate introductory CS courses are quite high. In this paper, we develop a predictive model for student in-class performance in an introductory CS course. The model can serve as an early warning system, flagging struggling students who might benefit from additional support. We use a variety of features from…
Descriptors: Textbooks, Surveys, Grade Prediction, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aulck, Lovenoor; Nambi, Dev; West, Jevin – International Educational Data Mining Society, 2020
Effectively estimating student enrollment and recruiting students is critical to the success of any university. However, despite having an abundance of data and researchers at the forefront of data science, traditional universities are not fully leveraging machine learning and data mining approaches to improve their enrollment management…
Descriptors: Resource Allocation, Scholarships, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Yijun; Xu, Qiangwen; Chen, Ming; Weiss, Gary M. – International Educational Data Mining Society, 2020
Predicting student success in a data science degree program is a challenging task due to the interdisciplinary nature of the field, the diverse backgrounds of the students, and an incomplete understanding of the precise skills that are most critical to success. In this study, the applicant's future academic performance in a Master of Data Science…
Descriptors: Grade Prediction, Data Analysis, Masters Programs, Admission Criteria
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use