NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…20
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chelsea Chandler; Rohit Raju; Jason G. Reitman; William R. Penuel; Monica Ko; Jeffrey B. Bush; Quentin Biddy; Sidney K. D’Mello – International Educational Data Mining Society, 2025
We investigated methods to enhance the generalizability of large language models (LLMs) designed to classify dimensions of collaborative discourse during small group work. Our research utilized five diverse datasets that spanned various grade levels, demographic groups, collaboration settings, and curriculum units. We explored different model…
Descriptors: Artificial Intelligence, Models, Natural Language Processing, Discourse Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yu Xiong; Shengyi Chen; Ting Cai; Lulu Chen; Jun Li – International Educational Data Mining Society, 2025
Teacher gesture recognition aims to identify and interpret teacher gestures within academic settings. It has been applied in domains such as teaching performance evaluation, the optimization of online education, and special needs education. However, the background similarity of teacher gestures, the inter-class similarity, and the intra-class…
Descriptors: Artificial Intelligence, Natural Language Processing, Nonverbal Communication, Classroom Communication
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Condor, Aubrey; Litster, Max; Pardos, Zachary – International Educational Data Mining Society, 2021
We explore how different components of an Automatic Short Answer Grading (ASAG) model affect the model's ability to generalize to questions outside of those used for training. For supervised automatic grading models, human ratings are primarily used as ground truth labels. Producing such ratings can be resource heavy, as subject matter experts…
Descriptors: Automation, Grading, Test Items, Generalization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiao, Yunkai; Zingle, Gabriel; Jia, Qinjin; Akbar, Shoaib; Song, Yang; Dong, Muyao; Qi, Li; Gehringer, Edward – International Educational Data Mining Society, 2020
Peer assessment adds value when students provide "helpful" feedback to their peers. But, this begs the question of how we determine "helpfulness." One important aspect is whether the review detects problems in the submitted work. To recognize problem detection, researchers have employed NLP and machine-learning text…
Descriptors: Peer Evaluation, Problems, Identification, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiménez, Haydée G.; Casanova, Marco A.; Finamore, Anna Carolina; Simões, Gonçalo – International Educational Data Mining Society, 2021
Sentiment Analysis is a field of Natural Language Processing which aims at classifying the author's sentiment in text. This paper first describes a sentiment analysis model for students' comments about professor performance. The model achieved impressive results for comments collected from student surveys conducted at a private university in…
Descriptors: Natural Language Processing, Data Analysis, Classification, Student Surveys
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fonseca, Samuel C.; Pereira, Filipe Dwan; Oliveira, Elaine H. T.; Oliveira, David B. F.; Carvalho, Leandro S. G.; Cristea, Alexandra I. – International Educational Data Mining Society, 2020
As programming must be learned by doing, introductory programming course learners need to solve many problems, e.g., on systems such as 'Online Judges'. However, as such courses are often compulsory for non-Computer Science (nonCS) undergraduates, this may cause difficulties to learners that do not have the typical intrinsic motivation for…
Descriptors: Programming, Introductory Courses, Computer Science Education, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pugh, Samuel L.; Subburaj, Shree Krishna; Rao, Arjun Ramesh; Stewart, Angela E. B.; Andrews-Todd, Jessica; D'Mello, Sidney K. – International Educational Data Mining Society, 2021
We investigated the feasibility of using automatic speech recognition (ASR) and natural language processing (NLP) to classify collaborative problem solving (CPS) skills from recorded speech in noisy environments. We analyzed data from 44 dyads of middle and high school students who used videoconferencing to collaboratively solve physics and math…
Descriptors: Problem Solving, Cooperation, Middle School Students, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stone, Cathlyn; Donnelly, Patrick J.; Dale, Meghan; Capello, Sarah; Kelly, Sean; Godley, Amanda; D'Mello, Sidney K. – International Educational Data Mining Society, 2019
We examine the ability of supervised text classification models to identify several discourse properties from teachers' speech with an eye for providing teachers with meaningful automated feedback about the quality of their classroom discourse. We collected audio recordings from 28 teachers from 10 schools in 164 authentic classroom sessions,…
Descriptors: Classification, Classroom Communication, Audio Equipment, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michalenko, Joshua J.; Lan, Andrew S.; Waters, Andrew E.; Grimaldi, Philip J.; Baraniuk, Richard G. – International Educational Data Mining Society, 2017
An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many students in their class, thus improving the quality of…
Descriptors: Data Analysis, Misconceptions, Student Attitudes, Feedback (Response)
Nye, Benjamin D.; Morrison, Donald M.; Samei, Borhan – International Educational Data Mining Society, 2015
Archived transcripts from tens of millions of online human tutoring sessions potentially contain important knowledge about how online tutors help, or fail to help, students learn. However, without ways of automatically analyzing these large corpora, any knowledge in this data will remain buried. One way to approach this issue is to train an…
Descriptors: Tutoring, Instructional Effectiveness, Tutors, Models
Previous Page | Next Page »
Pages: 1  |  2