NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…28
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea – International Educational Data Mining Society, 2022
Despite calls to increase the focus on explainability and interpretability in EDM and, in particular, student success prediction, so that it becomes useful for personalized intervention systems, only few efforts have been undertaken in that direction so far. In this paper, we argue that this is mainly due to the limitations of current Explainable…
Descriptors: Success, Prediction, Social Sciences, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rohani, Narjes; Gal, Kobi; Gallagher, Michael; Manataki, Areti – International Educational Data Mining Society, 2023
Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is…
Descriptors: Prediction, Academic Achievement, Health Education, Data Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aulck, Lovenoor; Nambi, Dev; West, Jevin – International Educational Data Mining Society, 2020
Effectively estimating student enrollment and recruiting students is critical to the success of any university. However, despite having an abundance of data and researchers at the forefront of data science, traditional universities are not fully leveraging machine learning and data mining approaches to improve their enrollment management…
Descriptors: Resource Allocation, Scholarships, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sanyal, Debopam; Bosch, Nigel; Paquette, Luc – International Educational Data Mining Society, 2020
Supervised machine learning has become one of the most important methods for developing educational and intelligent tutoring software; it is the backbone of many educational data mining methods for estimating knowledge, emotion, and other aspects of learning. Hence, in order to ensure optimal utilization of computing resources and effective…
Descriptors: Artificial Intelligence, Selection, Learning Analytics, Evaluation Criteria
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Brahman, Faeze; Varghese, Nikhil; Bhat, Suma; Chaturvedi, Snigdha – International Educational Data Mining Society, 2020
Despite several advantages of online education, lack of effective student-instructor interaction, especially when students need timely help, poses significant pedagogical challenges. Motivated by this, we address the problems of automatically identifying posts that express confusion or urgency from Massive Open Online Course (MOOC) forums. To this…
Descriptors: Automation, Online Courses, Discussion Groups, Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dong, Yihuan; Marwan, Samiha; Shabrina, Preya; Price, Thomas; Barnes, Tiffany – International Educational Data Mining Society, 2021
Over the years, researchers have studied novice programming behaviors when doing assignments and projects to identify struggling students. Much of these efforts focused on using student programming and interaction features to predict student success at a course level. While these methods are effective at early detection of struggling students in…
Descriptors: Navigation (Information Systems), Academic Achievement, Learner Engagement, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moore, Russell; Caines, Andrew; Elliott, Mark; Zaidi, Ahmed; Rice, Andrew; Buttery, Paula – International Educational Data Mining Society, 2019
Educational systems use models of student skill to inform decision-making processes. Defining such models manually is challenging due to the large number of relevant factors. We propose learning multidimensional representations (embeddings) from student activity data -- these are fixed-length real vectors with three desirable characteristics:…
Descriptors: Models, Knowledge Representation, Skills, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zingle, Gabriel; Radhakrishnan, Balaji; Xiao, Yunkai; Gehringer, Edward; Xiao, Zhongcan; Pramudianto, Ferry; Khurana, Gauraang; Arnav, Ayush – International Educational Data Mining Society, 2019
Peer assessment has proven to be a useful strategy for increasing the timeliness and quantity of formative feedback, as well as for promoting metacognitive thinking among students. Previous research has determined that reviews that contain suggestions can motivate students to revise and improve their work. This paper describes a method for…
Descriptors: Peer Evaluation, Formative Evaluation, Evaluation Methods, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fancsali, Stephen E.; Li, Hao; Sandbothe, Michael; Ritter, Steven – International Educational Data Mining Society, 2021
Recent work describes methods for systematic, data-driven improvement to instructional content and calls for diverse teams of learning engineers to implement and evaluate such improvements. Focusing on an approach called "design-loop adaptivity," we consider the problem of how developers might use data to target or prioritize particular…
Descriptors: Instructional Development, Instructional Improvement, Data Use, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Chengyuan; Cui, Jialin; Shang, Ruixuan; Xiao, Yunkai; Jia, Qinjin; Gehringer, Edward – International Educational Data Mining Society, 2022
An online peer-assessment system typically allows students to give textual feedback to their peers, with the goal of helping the peers improve their work. The amount of help that students receive is highly dependent on the quality of the reviews. Previous studies have investigated using machine learning to detect characteristics of reviews (e.g.,…
Descriptors: Peer Evaluation, Feedback (Response), Computer Mediated Communication, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2