NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 25 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea – International Educational Data Mining Society, 2022
Despite calls to increase the focus on explainability and interpretability in EDM and, in particular, student success prediction, so that it becomes useful for personalized intervention systems, only few efforts have been undertaken in that direction so far. In this paper, we argue that this is mainly due to the limitations of current Explainable…
Descriptors: Success, Prediction, Social Sciences, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Atapattu, Thushari; Falkner, Katrina; Tarmazdi, Hamid – International Educational Data Mining Society, 2016
With a goal of better understanding the online discourse within the Massive Open Online Course (MOOC) context, this paper presents an open source visualisation dashboard developed to identify and classify emergent discussion topics (or themes). As an extension to the authors' previous work in identifying key topics from MOOC discussion contents,…
Descriptors: Online Courses, Large Group Instruction, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Huy; Liew, Chun Wai – International Educational Data Mining Society, 2018
Recent works on Intelligent Tutoring Systems have focused on more complicated knowledge domains, which pose challenges in automated assessment of student performance. In particular, while the system can log every user action and keep track of the student's solution state, it is unable to determine the hidden intermediate steps leading to such…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Data Analysis, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Eagle, Michael; Barnes, Tiffany – International Educational Data Mining Society, 2015
Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…
Descriptors: Interaction, Teacher Student Relationship, Intelligent Tutoring Systems, Data
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klose, Mark; Desai, Vasvi; Song, Yang; Gehringer, Edward – International Educational Data Mining Society, 2020
Imagine a student using an intelligent tutoring system. A researcher records the correctness and time of each of your attempts at solving a math problem, nothing more. With no names, no birth dates, no connections to the school, you would think it impossible to track the answers back to the class. Yet, class sections have been identified with no…
Descriptors: Privacy, Learning Analytics, Data Collection, Information Storage
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Jack Z.; Lan, Andrew S.; Grimaldi, Phillip J.; Baraniuk, Richard G. – International Educational Data Mining Society, 2017
Existing personalized learning systems (PLSs) have primarily focused on providing learning analytics using data from learners. In this paper, we extend the capability of current PLSs by incorporating data from instructors. We propose a latent factor model that analyzes instructors' preferences in explicitly "excluding" particular…
Descriptors: Item Response Theory, Individualized Instruction, Prediction, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bydžovská, Hana – International Educational Data Mining Society, 2016
One of the main problems faced by university students is to create and manage the semester course plan. In this paper, we present a course enrollment recommender system based on data mining techniques. The system mainly helps with students' enrollment decisions. More specifically, it provides recommendation of selective and optional courses with…
Descriptors: Enrollment, College Students, Course Selection (Students), Data Analysis
Sabourin, Jennifer; Kosturko, Lucy; FitzGerald, Clare; McQuiggan, Scott – International Educational Data Mining Society, 2015
While the field of educational data mining (EDM) has generated many innovations for improving educational software and student learning, the mining of student data has recently come under a great deal of scrutiny. Many stakeholder groups, including public officials, media outlets, and parents, have voiced concern over the privacy of student data…
Descriptors: Privacy, Student Records, Data Processing, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pérez-Lemonche, Ángel; Drury, Byron Coffin; Pritchard, David – International Educational Data Mining Society, 2018
We analyze results from paired pre- and post-instruction administration of the Mechanics Baseline Test to 2238 students in introductory mechanics classes. We investigate pairs of specific wrong answers given with unusual frequency by students on the pretest. We also identify transitions between pre- and post-test answers on the same question which…
Descriptors: Data Collection, Knowledge Level, Misconceptions, Pretests Posttests
Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria – International Educational Data Mining Society, 2015
Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational…
Descriptors: Grouping (Instructional Purposes), Scheduling, Time Factors (Learning), Individualized Instruction
Agnihotri, Lalitha; Aghababyan, Ani; Mojarad, Shirin; Riedesel, Mark; Essa, Alfred – International Educational Data Mining Society, 2015
Student login data is a key resource for gaining insight into their learning experience. However, the scale and the complexity of this data necessitate a thorough exploration to identify potential actionable insights, thus rendering it less valuable compared to student achievement data. To compensate for the underestimation of login data…
Descriptors: Data Analysis, Web Based Instruction, Student Behavior, Correlation
Beheshti, Behzad; Desmarais, Michel C.; Naceur, Rhouma – International Educational Data Mining Society, 2012
Identifying the skills that determine the success or failure to exercises and question items is a difficult task. Multiple skills may be involved at various degree of importance, and skills may overlap and correlate. In an effort towards the goal of finding the skills behind a set of items, we investigate two techniques to determine the number of…
Descriptors: Prediction, Evaluation, Algebra, Mathematics
Previous Page | Next Page »
Pages: 1  |  2