Publication Date
| In 2026 | 0 |
| Since 2025 | 14 |
Descriptor
Source
| International Educational… | 14 |
Author
| Hang Li | 2 |
| Jiliang Tang | 2 |
| Joseph Krajcik | 2 |
| Kaiqi Yang | 2 |
| Richard Lee Davis | 2 |
| Seyed Parsa Neshaei | 2 |
| Yasemin Copur-Gencturk | 2 |
| Yucheng Chu | 2 |
| Abubakir Siedahmed | 1 |
| Adish Singla | 1 |
| Andy W. H. Khong | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 13 |
| Speeches/Meeting Papers | 13 |
| Books | 1 |
| Collected Works - Proceedings | 1 |
Education Level
| Higher Education | 5 |
| Postsecondary Education | 5 |
| Secondary Education | 3 |
| Junior High Schools | 2 |
| Middle Schools | 2 |
Audience
Location
| Ireland (Dublin) | 1 |
| New Caledonia | 1 |
| New Zealand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mohammad Arif Ul Alam; Geeta Verma; Eumie Jhong; Justin Barber; Ashis Kumer Biswas – International Educational Data Mining Society, 2025
The growing demand for microcredentials in education and workforce development necessitates scalable, accurate, and fair assessment systems for both soft and hard skills based on students' lived experience narratives. Existing approaches struggle with the complexities of hierarchical credentialing and the mitigation of algorithmic bias related to…
Descriptors: Microcredentials, Sex, Ethnicity, Artificial Intelligence
Idir Saïdi; Nicolas Durand; Frédéric Flouvat – International Educational Data Mining Society, 2025
The aim of this paper is to provide tools to teachers for monitoring student work and understanding practices in order to help student and possibly adapt exercises in the future. In the context of an online programming learning platform, we propose to study the attempts (i.e., submitted programs) of the students for each exercise by using…
Descriptors: Programming, Online Courses, Visual Aids, Algorithms
Chelsea Chandler; Rohit Raju; Jason G. Reitman; William R. Penuel; Monica Ko; Jeffrey B. Bush; Quentin Biddy; Sidney K. D’Mello – International Educational Data Mining Society, 2025
We investigated methods to enhance the generalizability of large language models (LLMs) designed to classify dimensions of collaborative discourse during small group work. Our research utilized five diverse datasets that spanned various grade levels, demographic groups, collaboration settings, and curriculum units. We explored different model…
Descriptors: Artificial Intelligence, Models, Natural Language Processing, Discourse Analysis
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
Yu Xiong; Shengyi Chen; Ting Cai; Lulu Chen; Jun Li – International Educational Data Mining Society, 2025
Teacher gesture recognition aims to identify and interpret teacher gestures within academic settings. It has been applied in domains such as teaching performance evaluation, the optimization of online education, and special needs education. However, the background similarity of teacher gestures, the inter-class similarity, and the intra-class…
Descriptors: Artificial Intelligence, Natural Language Processing, Nonverbal Communication, Classroom Communication
Michel C. Desmarais; Arman Bakhtiari; Ovide Bertrand Kuichua Kandem; Samira Chiny Folefack Temfack; Chahé Nerguizian – International Educational Data Mining Society, 2025
We propose a novel method for automated short answer grading (ASAG) designed for practical use in real-world settings. The method combines LLM embedding similarity with a nonlinear regression function, enabling accurate prediction from a small number of expert-graded responses. In this use case, a grader manually assesses a few responses, while…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Eric Rudolph; Philipp Steigerwald; Jens Albrecht – International Educational Data Mining Society, 2025
This study investigates the capabilities of Large Language Models to simulate counselling clients in educational role-plays in comparison to human role-players. Initially, we recorded role-playing sessions, where novice counsellors interacted with human peers acting as clients, followed by role-plays between humans and clients simulated by…
Descriptors: Artificial Intelligence, Technology Uses in Education, Counselor Training, Role Playing
Abubakir Siedahmed; Jaclyn Ocumpaugh; Zelda Ferris; Dinesh Kodwani; Eamon Worden; Neil Heffernan – International Educational Data Mining Society, 2025
Recent advances in AI have opened the door for the automated scoring of open-ended math problems, which were previously much more difficult to assess at scale. However, we know that biases still remain in some of these algorithms. For example, recent research on the automated scoring of student essays has shown that certain varieties of English…
Descriptors: Artificial Intelligence, Automation, Scoring, Mathematics Tests
Yucheng Chu; Hang Li; Kaiqi Yang; Harry Shomer; Yasemin Copur-Gencturk; Leonora Kaldaras; Kevin Haudek; Joseph Krajcik; Namsoo Shin; Hui Liu; Jiliang Tang – International Educational Data Mining Society, 2025
Open-text responses provide researchers and educators with rich, nuanced insights that multiple-choice questions cannot capture. When reliably assessed, such responses have the potential to enhance teaching and learning. However, scaling and consistently capturing these nuances remain significant challenges, limiting the widespread use of…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Yucheng Chu; Peng He; Hang Li; Haoyu Han; Kaiqi Yang; Yu Xue; Tingting Li; Yasemin Copur-Gencturk; Joseph Krajcik; Jiliang Tang – International Educational Data Mining Society, 2025
Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge…
Descriptors: Artificial Intelligence, Science Education, Technology Uses in Education, Natural Language Processing
Hyeongdon Moon; Richard Lee Davis; Seyed Parsa Neshaei; Pierre Dillenbourg – International Educational Data Mining Society, 2025
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Information Management
Victor-Alexandru Padurean; Tung Phung; Nachiket Kotalwar; Michael Liut; Juho Leinonen; Paul Denny; Adish Singla – International Educational Data Mining Society, 2025
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses…
Descriptors: Automation, Student Writing Models, Feedback (Response), Programming
Jiawei Li; Qianru Lyu; Wei Qiu; Andy W. H. Khong – International Educational Data Mining Society, 2025
Deep learning-based course recommendation systems often suffer from a lack of interpretability, limiting their practical utility for students and academic advisors. To address this challenge, we propose a modular, post-hoc explanation framework leveraging Large Language Models (LLMs) to enhance the transparency of deep learning-driven…
Descriptors: Artificial Intelligence, Information Systems, Technology Uses in Education, Course Selection (Students)
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education

Peer reviewed
