Publication Date
| In 2026 | 0 |
| Since 2025 | 9 |
Descriptor
| Artificial Intelligence | 6 |
| Models | 6 |
| Classification | 4 |
| Data Analysis | 3 |
| Data Use | 3 |
| Higher Education | 3 |
| Natural Language Processing | 3 |
| Technology Uses in Education | 3 |
| Accuracy | 2 |
| Algorithms | 2 |
| Educational Technology | 2 |
| More ▼ | |
Source
| International Educational… | 9 |
Author
| Ahmad Slim | 1 |
| Ameer Slim | 1 |
| António José Mendes | 1 |
| Caitlin Mills, Editor | 1 |
| Chan-Tong Lam | 1 |
| Chaouki Abdallah | 1 |
| Chris Piech | 1 |
| Davide Taibi, Editor | 1 |
| Elisha Allen | 1 |
| Frédéric Flouvat | 1 |
| Giora Alexandron, Editor | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 8 |
| Speeches/Meeting Papers | 8 |
| Books | 1 |
| Collected Works - Proceedings | 1 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 3 |
| Secondary Education | 1 |
Audience
Location
| Ireland (Dublin) | 1 |
| Netherlands | 1 |
| New Caledonia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip I. Pavlik Jr.; Luke G. Eglington – International Educational Data Mining Society, 2025
In educational systems, predictive models face significant challenges during initial deployment and when new students begin to use them or when new exercises are added to the system due to a lack of data for making initial inferences, often called the cold start problem. This paper tests logitdec and logitdecevol, "evolutionary" features…
Descriptors: Artificial Intelligence, Models, Prediction, Accuracy
Ting Cai; Qingyuan Tang; Yu Xiong; Lu Zhang – International Educational Data Mining Society, 2025
Teacher classroom teaching behavior indicators serve as a crucial foundation for guiding instructional evaluation. Existing indicator system suffers from limitations such as strong subjectivity and weak contextual generalization capabilities. Generalized category discovery (GCD) enables automatic data clustering to identify known categories and…
Descriptors: Teacher Behavior, Teaching Methods, Models, Accuracy
Wan-Chong Choi; Chan-Tong Lam; António José Mendes – International Educational Data Mining Society, 2025
Missing data presents a significant challenge in Educational Data Mining (EDM). Imputation techniques aim to reconstruct missing data while preserving critical information in datasets for more accurate analysis. Although imputation techniques have gained attention in various fields in recent years, their use for addressing missing data in…
Descriptors: Research Problems, Data Analysis, Research Methodology, Models
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Idir Saïdi; Nicolas Durand; Frédéric Flouvat – International Educational Data Mining Society, 2025
The aim of this paper is to provide tools to teachers for monitoring student work and understanding practices in order to help student and possibly adapt exercises in the future. In the context of an online programming learning platform, we propose to study the attempts (i.e., submitted programs) of the students for each exercise by using…
Descriptors: Programming, Online Courses, Visual Aids, Algorithms
Juliette Woodrow; Sanmi Koyejo; Chris Piech – International Educational Data Mining Society, 2025
High-quality feedback requires understanding of a student's work, insights into what concepts would help them improve, and language that matches the preferences of the specific teaching team. While Large Language Models (LLMs) can generate coherent feedback, adapting these responses to align with specific teacher preferences remains an open…
Descriptors: Feedback (Response), Artificial Intelligence, Teacher Attitudes, Preferences
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
Ahmad Slim; Chaouki Abdallah; Elisha Allen; Michael Hickman; Ameer Slim – International Educational Data Mining Society, 2025
Curricular design in higher education significantly impacts student success and institutional performance. However, academic programs' complexity--shaped by pass rates, prerequisite dependencies, and course repeat policies--creates challenges for administrators. This paper presents a method for modeling curricular pathways including development of…
Descriptors: Curriculum Design, Integrated Curriculum, Data Analysis, Monte Carlo Methods
Maarten van der Velde; Malte Krambeer; Hedderik van Rijn – International Educational Data Mining Society, 2025
Ensuring the integrity of results in online learning and assessment tools is a challenge, due to the lack of direct supervision increasing the risk of fraud. We propose and evaluate a machine learning-based method for detecting anomalous behaviour in an online retrieval practice task, using an XGBoost classifier trained on keystroke dynamics and…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Behavior, Information Retrieval

Peer reviewed
