NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Haim, Aaron; Gyurcsan, Robert; Baxter, Chris; Shaw, Stacy T.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
Despite increased efforts to assess the adoption rates of open science and robustness of reproducibility in sub-disciplines of education technology, there is a lack of understanding of why some research is not reproducible. Prior work has taken the first step toward assessing reproducibility of research, but has assumed certain constraints which…
Descriptors: Conferences (Gatherings), Educational Research, Replication (Evaluation), Access to Information
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea; Tschalzev, Andrej; Bartelt, Christian; Stuckenschmidt, Heiner – International Educational Data Mining Society, 2023
Demographic features are commonly used in Educational Data Mining (EDM) research to predict at-risk students. Yet, the practice of using demographic features has to be considered extremely problematic due to the data's sensitive nature, but also because (historic and representation) biases likely exist in the training data, which leads to strong…
Descriptors: Information Retrieval, Data Processing, Pattern Recognition, Information Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chopra, Shivangi; Gautreau, Hannah; Khan, Abeer; Mirsafian, Melicaalsadat; Golab, Lukasz – International Educational Data Mining Society, 2018
It is well known that post-secondary science and engineering programs attract fewer female students. In this paper, we analyze gender differences through text mining of over 30,000 applications to the engineering faculty of a large North American university. We use syntactic and semantic analysis methods to highlight differences in motivation,…
Descriptors: Gender Differences, Undergraduate Students, Engineering Education, STEM Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stapel, Martin; Zheng, Zhilin; Pinkwart, Niels – International Educational Data Mining Society, 2016
The number of e-learning platforms and blended learning environments is continuously increasing and has sparked a lot of research around improvements of educational processes. Here, the ability to accurately predict student performance plays a vital role. Previous studies commonly focused on the construction of predictors tailored to a formal…
Descriptors: Teaching Methods, Academic Achievement, Electronic Learning, Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing