NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1282889
Record Type: Journal
Publication Date: 2020
Pages: 14
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1939-1382
EISSN: N/A
Available Date: N/A
Context-Based Data Model for Effective Real-Time Learning Analytics
IEEE Transactions on Learning Technologies, v13 n4 p790-803 Oct-Dec 2020
Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are inefficient in storing computed results, which are often required for follow-up analysis. These follow-up analyses depend largely on stakeholder objectives, which often impose constraints to the analysis process. In this article, we propose a context-based data model that addresses two challenges associated with learning analytics: the increased processing time due to multiple data granularities required from various stakeholder objectives, and the lack of support for archiving and updating of new information that exist during iterative analysis. We demonstrate how the proposed model can help support analysis and visualization via the XuetangX and ASSISTments datasets. Results show that although our proposed data model requires preprocessing, it requires less time to process queries associated with learning-activity attributes of various granularities compared to existing data models.
Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, Piscataway, NJ 08854. Tel: 732-981-0060; Web site: http://ieeexplore.ieee.org.bibliotheek.ehb.be/xpl/RecentIssue.jsp?punumber=4620076
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A