NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Deeva, Galina; De Smedt, Johannes; De Weerdt, Jochen – IEEE Transactions on Learning Technologies, 2022
Due to the unprecedented growth in available data collected by e-learning platforms, including platforms used by massive open online course (MOOC) providers, important opportunities arise to structurally use these data for decision making and improvement of the educational offering. Student retention is a strategic task that can be supported by…
Descriptors: Electronic Learning, MOOCs, Dropouts, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Fang; Zhao, Liang; Zhao, Jiayi; Dai, Qin; Fan, Chunlong; Shen, Jun – IEEE Transactions on Learning Technologies, 2022
Educational process mining is now a promising method to provide decision-support information for the teaching-learning process via finding useful educational guidance from the event logs recorded in the learning management system. Existing studies mainly focus on mining students' problem-solving skills or behavior patterns and intervening in…
Descriptors: Data Use, Learning Management Systems, Problem Solving, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Kai; Tatinati, Sivanagaraja; Khong, Andy W. H. – IEEE Transactions on Learning Technologies, 2020
Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are…
Descriptors: Context Effect, Models, Learning Analytics, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Zongkai; Yang, Juan; Rice, Kerry; Hung, Jui-Long; Du, Xu – IEEE Transactions on Learning Technologies, 2020
This article proposes two innovative approaches, the one-channel learning image recognition and the three-channel learning image recognition, to convert student's course involvements into images for early warning predictive analysis. Multiple experiments with 5235 students and 576 absolute/1728 relative input variables were conducted to verify…
Descriptors: Distance Education, At Risk Students, Artificial Intelligence, Man Machine Systems